| 如果<math> \sigma > {1}</math>( <math> C \gg C_r </math>,且<math>L \approx L_r</math>), 网络即为小世界网络 | | 如果<math> \sigma > {1}</math>( <math> C \gg C_r </math>,且<math>L \approx L_r</math>), 网络即为小世界网络 |
− | 另一个量化网络小世界性的方法,是利用小世界网络的原始定义,比较给定网络与等价随机网格网络的集聚系数及路径长度<ref name="a7">#The ubiquity of small-world networks Q.K. Telesford, K.E. Joyce, S. Hayasaka, J.H. Burdette, P.J. Laurienti, Brain Connect. 2011;1(5):367–75, doi:10.1089/brain.2011.0038</ref>。小世界所用的度量(ω)定义如下<ref name="a8">#Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604768 The Ubiquity of Small-World Networks]". Brain Connectivity. 1 (0038): 367–75. doi:10.1089/brain.2011.0038. PMC 3604768 Freely accessible. PMID 22432451.</ref>: | + | 另一个量化网络小世界性的方法,是利用小世界网络的原始定义,比较给定网络与等价随机网格网络的集聚系数及路径长度<ref name="a7">#The ubiquity of small-world networks Q.K. Telesford, K.E. Joyce, S. Hayasaka, J.H. Burdette, P.J. Laurienti, Brain Connect. 2011;1(5):367–75, doi:10.1089/brain.2011.0038</ref>。小世界所用的度量(<math> \omega</math>)定义如下<ref name="a8">#Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604768 The Ubiquity of Small-World Networks]". Brain Connectivity. 1 (0038): 367–75. doi:10.1089/brain.2011.0038. PMC 3604768 Freely accessible. PMID 22432451.</ref>: |
− | R. Cohen和[https://en.wikipedia.org/wiki/Shlomo_Havlin Havlin]分析出<ref name="a9">#R. Cohen, S. Havlin, and D. ben-Avraham (2002). "[http://havlin.biu.ac.il/Publications.php?keyword=Structural+properties+of+scale+free+networks&year=*&match=all Structural properties of scale free networks]". Handbook of graphs and networks. Wiley-VCH, 2002 (Chap. 4).</ref><ref name="a10">#R. Cohen, S. Havlin (2003). "[http://havlin.biu.ac.il/Publications.php?keyword=Scale-free+networks+are+ultrasmall++&year=*&match=all Scale-free networks are ultrasmall]". Phys. Rev. Lett. 90 (5): 058701. arXiv:cond-mat/0205476. Bibcode:2003PhRvL..90e8701C. doi:10.1103/PhysRevLett.90.058701. PMID 12633404.</ref>,[https://en.wikipedia.org/wiki/Scale-free_networks 无标度网络]是超小世界。在这种情况下,由于中心的存在,最短路径会变得非常小,并且满足如下关系: | + | R. Cohen和[https://en.wikipedia.org/wiki/Shlomo_Havlin Havlin]分析出<ref name="a9">#R. Cohen, S. Havlin, and D. ben-Avraham (2002). "[http://havlin.biu.ac.il/Publications.php?keyword=Structural+properties+of+scale+free+networks&year=*&match=all Structural properties of scale free networks]". Handbook of graphs and networks. Wiley-VCH, 2002 (Chap. 4).</ref><ref name="a10">#R. Cohen, S. Havlin (2003). "[http://havlin.biu.ac.il/Publications.php?keyword=Scale-free+networks+are+ultrasmall++&year=*&match=all Scale-free networks are ultrasmall]". Phys. Rev. Lett. 90 (5): 058701. arXiv:cond-mat/0205476. Bibcode:2003PhRvL..90e8701C. doi:10.1103/PhysRevLett.90.058701. PMID 12633404.</ref>,[[无标度网络]]是超小世界。在这种情况下,由于中心的存在,最短路径会变得非常小,并且满足如下关系: |