更改

跳到导航 跳到搜索
删除30字节 、 2020年8月13日 (四) 23:35
第21行: 第21行:  
如果<math>  \sigma > {1}</math>( <math> C \gg C_r </math>,且<math>L \approx L_r</math>), 网络即为小世界网络
 
如果<math>  \sigma > {1}</math>( <math> C \gg C_r </math>,且<math>L \approx L_r</math>), 网络即为小世界网络
   −
另一个量化网络小世界性的方法,是利用小世界网络的原始定义,比较给定网络与等价随机网格网络的集聚系数及路径长度<ref name="a7">#The ubiquity of small-world networks Q.K. Telesford, K.E. Joyce, S. Hayasaka, J.H. Burdette, P.J. Laurienti, Brain Connect. 2011;1(5):367–75, doi:10.1089/brain.2011.0038</ref>。小世界所用的度量(ω)定义如下<ref name="a8">#Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604768 The Ubiquity of Small-World Networks]". Brain Connectivity. 1 (0038): 367–75. doi:10.1089/brain.2011.0038. PMC 3604768 Freely accessible. PMID 22432451.</ref>:
+
另一个量化网络小世界性的方法,是利用小世界网络的原始定义,比较给定网络与等价随机网格网络的集聚系数及路径长度<ref name="a7">#The ubiquity of small-world networks Q.K. Telesford, K.E. Joyce, S. Hayasaka, J.H. Burdette, P.J. Laurienti, Brain Connect. 2011;1(5):367–75, doi:10.1089/brain.2011.0038</ref>。小世界所用的度量(<math> \omega</math>)定义如下<ref name="a8">#Telesford, Joyce, Hayasaka, Burdette, and Laurienti (2011). "[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3604768 The Ubiquity of Small-World Networks]". Brain Connectivity. 1 (0038): 367–75. doi:10.1089/brain.2011.0038. PMC 3604768 Freely accessible. PMID 22432451.</ref>:
    
:<math> \omega =  \frac{L_r}{L}-\frac{C}{C_l} </math>
 
:<math> \omega =  \frac{L_r}{L}-\frac{C}{C_l} </math>
第27行: 第27行:  
其中,对于所选受测网络而言,<i>L</i>是特征路径长度,<i>C</i>是集聚系数。<math>C_l</math>是等价栅格网络的集聚系数, 而<math>L_r</math>则是等价随机网络的的特征路径长度。
 
其中,对于所选受测网络而言,<i>L</i>是特征路径长度,<i>C</i>是集聚系数。<math>C_l</math>是等价栅格网络的集聚系数, 而<math>L_r</math>则是等价随机网络的的特征路径长度。
   −
R. Cohen和[https://en.wikipedia.org/wiki/Shlomo_Havlin Havlin]分析出<ref name="a9">#R. Cohen, S. Havlin, and D. ben-Avraham (2002). "[http://havlin.biu.ac.il/Publications.php?keyword=Structural+properties+of+scale+free+networks&year=*&match=all Structural properties of scale free networks]". Handbook of graphs and networks. Wiley-VCH, 2002 (Chap. 4).</ref><ref name="a10">#R. Cohen, S. Havlin (2003). "[http://havlin.biu.ac.il/Publications.php?keyword=Scale-free+networks+are+ultrasmall++&year=*&match=all Scale-free networks are ultrasmall]". Phys. Rev. Lett. 90 (5): 058701. arXiv:cond-mat/0205476. Bibcode:2003PhRvL..90e8701C. doi:10.1103/PhysRevLett.90.058701. PMID 12633404.</ref>,[https://en.wikipedia.org/wiki/Scale-free_networks 无标度网络]是超小世界。在这种情况下,由于中心的存在,最短路径会变得非常小,并且满足如下关系:
+
R. Cohen和[https://en.wikipedia.org/wiki/Shlomo_Havlin Havlin]分析出<ref name="a9">#R. Cohen, S. Havlin, and D. ben-Avraham (2002). "[http://havlin.biu.ac.il/Publications.php?keyword=Structural+properties+of+scale+free+networks&year=*&match=all Structural properties of scale free networks]". Handbook of graphs and networks. Wiley-VCH, 2002 (Chap. 4).</ref><ref name="a10">#R. Cohen, S. Havlin (2003). "[http://havlin.biu.ac.il/Publications.php?keyword=Scale-free+networks+are+ultrasmall++&year=*&match=all Scale-free networks are ultrasmall]". Phys. Rev. Lett. 90 (5): 058701. arXiv:cond-mat/0205476. Bibcode:2003PhRvL..90e8701C. doi:10.1103/PhysRevLett.90.058701. PMID 12633404.</ref>,[[无标度网络]]是超小世界。在这种情况下,由于中心的存在,最短路径会变得非常小,并且满足如下关系:
    
:<math> L \propto \log{\log N}</math>
 
:<math> L \propto \log{\log N}</math>
7,129

个编辑

导航菜单