第20行: |
第20行: |
| The two sets <math>U</math> and <math>V</math> may be thought of as a coloring of the graph with two colors: if one colors all nodes in <math>U</math> blue, and all nodes in <math>V</math> green, each edge has endpoints of differing colors, as is required in the graph coloring problem.<ref name="s12">{{citation | year = 2012}}.</ref> In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another green, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. | | The two sets <math>U</math> and <math>V</math> may be thought of as a coloring of the graph with two colors: if one colors all nodes in <math>U</math> blue, and all nodes in <math>V</math> green, each edge has endpoints of differing colors, as is required in the graph coloring problem.<ref name="s12">{{citation | year = 2012}}.</ref> In contrast, such a coloring is impossible in the case of a non-bipartite graph, such as a triangle: after one node is colored blue and another green, the third vertex of the triangle is connected to vertices of both colors, preventing it from being assigned either color. |
| | | |
− | 通常可以将集合U和集合V视为被着色的两个图集:如果其中一个所有顶点为蓝色,另外一类为绿色,那么每条连边的两端必须具有不同的颜色。这是二分图必须满足的条件。相反,在非二分图(例如三角形)的情况下,这种着色要求变得不可能:因为一个顶点为蓝色,另一个为绿色,其三角形剩下的第三个顶点将需要同时连接这两个颜色,明显这是无法达到,因为它违背了初始要求:二分图中所有顶点必须分为两个不相交且独立的集合U和V。即第三个顶点必须为两个颜色当中的一个。
| + | 通常可以将集合''U''和集合''V''视为被着色的两个图集:如果其中一个所有顶点为蓝色,另外一类为绿色,那么每条连边的两端必须具有不同的颜色。这是二分图必须满足的条件。相反,在非二分图(例如三角形)的情况下,这种着色要求变得不可能:因为一个顶点为蓝色,另一个为绿色,其三角形剩下的第三个顶点将需要同时连接这两个颜色,明显这是无法达到,因为它违背了初始要求:二分图中所有顶点必须分为两个不相交且独立的集合''U''和''V''。即第三个顶点必须为两个颜色当中的一个。 |
| | | |
| | | |
第28行: |
第28行: |
| One often writes <math>G=(U,V,E)</math> to denote a bipartite graph whose partition has the parts <math>U</math> and <math>V</math>, with <math>E</math> denoting the edges of the graph. If a bipartite graph is not connected, it may have more than one bipartition;<ref>{{citation | year = 2008}}.</ref> in this case, the <math>(U,V,E)</math> notation is helpful in specifying one particular bipartition that may be of importance in an application. If <math>|U|=|V|</math>, that is, if the two subsets have equal cardinality, then <math>G</math> is called a balanced bipartite graph. If all vertices on the same side of the bipartition have the same degree, then <math>G</math> is called biregular. | | One often writes <math>G=(U,V,E)</math> to denote a bipartite graph whose partition has the parts <math>U</math> and <math>V</math>, with <math>E</math> denoting the edges of the graph. If a bipartite graph is not connected, it may have more than one bipartition;<ref>{{citation | year = 2008}}.</ref> in this case, the <math>(U,V,E)</math> notation is helpful in specifying one particular bipartition that may be of importance in an application. If <math>|U|=|V|</math>, that is, if the two subsets have equal cardinality, then <math>G</math> is called a balanced bipartite graph. If all vertices on the same side of the bipartition have the same degree, then <math>G</math> is called biregular. |
| | | |
− | 对于二分图常用的表达方式是G=(U,V,E),其中U和V分别代表顶点子集,E代表二分图中的连边。如果有一个二分图内部不连通,则它可能具有多个二分图;在这种情况下,(U,V,E)标注将有助于指定一个特殊的二分图。在实际的应用当中,这无比重要。如果|U|=|V|,即这两个子集具有相同的基数,此时G被称为'''<font color="#ff8000"> 均衡二分图Balanced bipartite graph</font>'''。如果在二分图中同一侧(同一个子集)所有的顶点都具有相同的度数,则G被称为'''<font color="#ff8000"> 双正则二分图Biregular</font>'''。
| + | 对于二分图常用的表达方式是''G=(U,V,E)'',其中''U''和''V''分别代表顶点子集,''E''代表二分图中的连边。如果有一个二分图内部不连通,则它可能具有多个二分图;在这种情况下,''(U,V,E)''标注将有助于指定一个特殊的二分图。在实际的应用当中,这无比重要。如果''|U|=|V|'',即这两个子集具有相同的基数,此时''G''被称为'''<font color="#ff8000"> 均衡二分图Balanced bipartite graph</font>'''。如果在二分图中同一侧(同一个子集)所有的顶点都具有相同的度数,则''G''被称为'''<font color="#ff8000"> 双正则二分图Biregular</font>'''。 |
| | | |
| | | |
第78行: |
第78行: |
| | | |
| * The [[complete bipartite graph]] on ''m'' and ''n'' vertices, denoted by ''K<sub>n,m</sub>'' is the bipartite graph <math>G = (U, V, E)</math>, where ''U'' and ''V'' are disjoint sets of size ''m'' and ''n'', respectively, and ''E'' connects every vertex in ''U'' with all vertices in ''V''. It follows that ''K<sub>m,n</sub>'' has ''mn'' edges. | | * The [[complete bipartite graph]] on ''m'' and ''n'' vertices, denoted by ''K<sub>n,m</sub>'' is the bipartite graph <math>G = (U, V, E)</math>, where ''U'' and ''V'' are disjoint sets of size ''m'' and ''n'', respectively, and ''E'' connects every vertex in ''U'' with all vertices in ''V''. It follows that ''K<sub>m,n</sub>'' has ''mn'' edges. |
− | * 在一个完全二分图中,分别有由m和n的顶点(用Km,n表示)组成的两个不相交的集合U和V,连边E由分别在集合U和V的两个顶点连接。该二分图表示为G =(U,V,E),并且具有mn条边。另外完全二分图还包含一个特例,那就是'''<font color="#ff8000"> 冠图Crown graphs</font>'''。冠图是通过将一个完全二分图中所有的完美匹配连边去掉形成的。 | + | * 在一个完全二分图中,分别有由''m''和''n''的顶点(用''Km,n''表示)组成的两个不相交的集合''U''和''V'',连边''E''由分别在集合''U''和''V''的两个顶点连接。该二分图表示为''G =(U,V,E)'',并且具有''mn''条边。另外完全二分图还包含一个特例,那就是'''<font color="#ff8000"> 冠图Crown graphs</font>'''。冠图是通过将一个完全二分图中所有的完美匹配连边去掉形成的。 |
| | | |
| | | |