更改

跳到导航 跳到搜索
添加222字节 、 2020年8月18日 (二) 14:05
无编辑摘要
第7行: 第7行:  
'''Causal inference''' is the process of drawing a conclusion about a [[causal]] connection based on the conditions of the occurrence of an effect. The main difference between causal inference and inference of [[association (statistics)|association]] is that the former analyzes the response of the effect variable when the cause is changed.<ref name=Pearl_Journal>{{cite journal|last=Pearl|first=Judea|title=Causal inference in statistics: An overview|journal=Statistics Surveys|date=1 January 2009|volume=3|issue=|pages=96–146|doi=10.1214/09-SS057|url=http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf}}</ref><ref name=Morgan_book>{{cite book|last=Morgan|first=Stephen|author2=Winship, Chris|title=Counterfactuals and Causal inference|publisher=Cambridge University Press|year=2007|isbn=978-0-521-67193-4}}</ref> The science of why things occur is called [[etiology]].  Causal inference is an example of [[causal reasoning]].
 
'''Causal inference''' is the process of drawing a conclusion about a [[causal]] connection based on the conditions of the occurrence of an effect. The main difference between causal inference and inference of [[association (statistics)|association]] is that the former analyzes the response of the effect variable when the cause is changed.<ref name=Pearl_Journal>{{cite journal|last=Pearl|first=Judea|title=Causal inference in statistics: An overview|journal=Statistics Surveys|date=1 January 2009|volume=3|issue=|pages=96–146|doi=10.1214/09-SS057|url=http://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf}}</ref><ref name=Morgan_book>{{cite book|last=Morgan|first=Stephen|author2=Winship, Chris|title=Counterfactuals and Causal inference|publisher=Cambridge University Press|year=2007|isbn=978-0-521-67193-4}}</ref> The science of why things occur is called [[etiology]].  Causal inference is an example of [[causal reasoning]].
   −
因果推理是根据某一效应发生的条件得出关于因果关系的结论的过程。因果推理与关联推理的主要区别在于前者是分析结果变量在原因发生变化时的响应。为什么事情会发生的科学叫做病因学。因果推理就是因果推理推理的一个例子。
+
'''<font color = '#ff8000'>因果推理</font>'''是根据某一效应发生的条件得出关于因果关系的结论的过程。因果推理与关联推理的主要区别在于前者是分析结果变量在原因发生变化时的响应。为什么事情会发生的科学叫做'''<font color = '#ff8000'>病因学</font>'''。因果推理就是'''<font color = '#ff8000'>因果推理</font>'''推理的一个例子。
      第27行: 第27行:  
Epidemiological studies employ different [[epidemiological method]]s of collecting and measuring evidence of risk factors and effect and different ways of measuring association between the two. A [[hypothesis]] is formulated, and then [[Statistical hypothesis testing|tested with statistical methods]]. It is [[statistical inference]] that helps decide if data are due to chance, also called [[random variation]], or indeed correlated and if so how strongly. However, [[correlation does not imply causation]], so further methods must be used to infer causation.{{Citation needed|date=May 2019}}
 
Epidemiological studies employ different [[epidemiological method]]s of collecting and measuring evidence of risk factors and effect and different ways of measuring association between the two. A [[hypothesis]] is formulated, and then [[Statistical hypothesis testing|tested with statistical methods]]. It is [[statistical inference]] that helps decide if data are due to chance, also called [[random variation]], or indeed correlated and if so how strongly. However, [[correlation does not imply causation]], so further methods must be used to infer causation.{{Citation needed|date=May 2019}}
   −
流行病学研究采用不同的流行病学方法来收集和衡量危险因素和影响的证据,并采用不同的方法来衡量两者之间的关联性。一个假设被制定出来,然后用统计学方法进行检验。这个推论统计学有助于判断数据是由偶然性引起的,也称为随机变异,还是确实存在相关性,以及相关性有多强。然而,相关不蕴涵因果,因此必须使用进一步的方法来推断因果关系。
+
流行病学研究采用不同的'''<font color = '#ff8000'>流行病学</font>'''方法来收集和衡量危险因素和影响的证据,并采用不同的方法来衡量两者之间的关联性。一个假设被制定出来,然后用统计学方法进行检验。这个'''<font color = '#ff8000'>推论统计学</font>'''有助于判断数据是由偶然性引起的,也称为'''<font color = '#ff8000'>随机变异</font>''',还是确实存在相关性,以及相关性有多强。然而,相关不蕴涵因果,因此必须使用进一步的方法来推断因果关系。
     
259

个编辑

导航菜单