更改

跳到导航 跳到搜索
添加13字节 、 2020年8月20日 (四) 19:19
第751行: 第751行:     
==Percolation centrality==
 
==Percolation centrality==
 
+
渗滤中心性
 
A slew of centrality measures exist to determine the ‘importance’ of a single node in a complex network. However, these measures quantify the importance of a node in purely topological terms, and the value of the node does not depend on the ‘state’ of the node in any way. It remains constant regardless of network dynamics. This is true even for the weighted betweenness measures. However, a node may very well be centrally located in terms of betweenness centrality or another centrality measure, but may not be ‘centrally’ located in the context of a network in which there is percolation. Percolation of a ‘contagion’ occurs in complex networks in a number of scenarios. For example, viral or bacterial infection can spread over social networks of people, known as contact networks. The spread of disease can also be considered at a higher level of abstraction, by contemplating a network of towns or population centres, connected by road, rail or air links. Computer viruses can spread over computer networks. Rumours or news about business offers and deals can also spread via social networks of people. In all of these scenarios, a ‘contagion’ spreads over the links of a complex network, altering the ‘states’ of the nodes as it spreads, either recoverably or otherwise. For example, in an epidemiological scenario, individuals go from ‘susceptible’ to ‘infected’ state as the infection spreads. The states the individual nodes can take in the above examples could be binary (such as received/not received a piece of news), discrete (susceptible/infected/recovered), or even continuous (such as the proportion of infected people in a town), as the contagion spreads. The common feature in all these scenarios is that the spread of contagion results in the change of node states in networks. Percolation centrality (PC) was proposed with this in mind, which specifically measures the importance of nodes in terms of aiding the percolation through the network. This measure was proposed by Piraveenan et al.<ref name="piraveenan2013">{{cite journal |last1 = Piraveenan |first1 = M. |last2 = Prokopenko |first2 = M.|last3 = Hossain|first3 = L. |year=2013| title = Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks | journal = PLOS One | volume=8 | issue=1 | doi=10.1371/journal.pone.0053095 | pages=e53095 | pmid=23349699 | pmc=3551907| bibcode=2013PLoSO...853095P }}</ref>
 
A slew of centrality measures exist to determine the ‘importance’ of a single node in a complex network. However, these measures quantify the importance of a node in purely topological terms, and the value of the node does not depend on the ‘state’ of the node in any way. It remains constant regardless of network dynamics. This is true even for the weighted betweenness measures. However, a node may very well be centrally located in terms of betweenness centrality or another centrality measure, but may not be ‘centrally’ located in the context of a network in which there is percolation. Percolation of a ‘contagion’ occurs in complex networks in a number of scenarios. For example, viral or bacterial infection can spread over social networks of people, known as contact networks. The spread of disease can also be considered at a higher level of abstraction, by contemplating a network of towns or population centres, connected by road, rail or air links. Computer viruses can spread over computer networks. Rumours or news about business offers and deals can also spread via social networks of people. In all of these scenarios, a ‘contagion’ spreads over the links of a complex network, altering the ‘states’ of the nodes as it spreads, either recoverably or otherwise. For example, in an epidemiological scenario, individuals go from ‘susceptible’ to ‘infected’ state as the infection spreads. The states the individual nodes can take in the above examples could be binary (such as received/not received a piece of news), discrete (susceptible/infected/recovered), or even continuous (such as the proportion of infected people in a town), as the contagion spreads. The common feature in all these scenarios is that the spread of contagion results in the change of node states in networks. Percolation centrality (PC) was proposed with this in mind, which specifically measures the importance of nodes in terms of aiding the percolation through the network. This measure was proposed by Piraveenan et al.<ref name="piraveenan2013">{{cite journal |last1 = Piraveenan |first1 = M. |last2 = Prokopenko |first2 = M.|last3 = Hossain|first3 = L. |year=2013| title = Percolation Centrality: Quantifying Graph-Theoretic Impact of Nodes during Percolation in Networks | journal = PLOS One | volume=8 | issue=1 | doi=10.1371/journal.pone.0053095 | pages=e53095 | pmid=23349699 | pmc=3551907| bibcode=2013PLoSO...853095P }}</ref>
    
A slew of centrality measures exist to determine the ‘importance’ of a single node in a complex network. However, these measures quantify the importance of a node in purely topological terms, and the value of the node does not depend on the ‘state’ of the node in any way. It remains constant regardless of network dynamics. This is true even for the weighted betweenness measures. However, a node may very well be centrally located in terms of betweenness centrality or another centrality measure, but may not be ‘centrally’ located in the context of a network in which there is percolation. Percolation of a ‘contagion’ occurs in complex networks in a number of scenarios. For example, viral or bacterial infection can spread over social networks of people, known as contact networks. The spread of disease can also be considered at a higher level of abstraction, by contemplating a network of towns or population centres, connected by road, rail or air links. Computer viruses can spread over computer networks. Rumours or news about business offers and deals can also spread via social networks of people. In all of these scenarios, a ‘contagion’ spreads over the links of a complex network, altering the ‘states’ of the nodes as it spreads, either recoverably or otherwise. For example, in an epidemiological scenario, individuals go from ‘susceptible’ to ‘infected’ state as the infection spreads. The states the individual nodes can take in the above examples could be binary (such as received/not received a piece of news), discrete (susceptible/infected/recovered), or even continuous (such as the proportion of infected people in a town), as the contagion spreads. The common feature in all these scenarios is that the spread of contagion results in the change of node states in networks. Percolation centrality (PC) was proposed with this in mind, which specifically measures the importance of nodes in terms of aiding the percolation through the network. This measure was proposed by Piraveenan et al.
 
A slew of centrality measures exist to determine the ‘importance’ of a single node in a complex network. However, these measures quantify the importance of a node in purely topological terms, and the value of the node does not depend on the ‘state’ of the node in any way. It remains constant regardless of network dynamics. This is true even for the weighted betweenness measures. However, a node may very well be centrally located in terms of betweenness centrality or another centrality measure, but may not be ‘centrally’ located in the context of a network in which there is percolation. Percolation of a ‘contagion’ occurs in complex networks in a number of scenarios. For example, viral or bacterial infection can spread over social networks of people, known as contact networks. The spread of disease can also be considered at a higher level of abstraction, by contemplating a network of towns or population centres, connected by road, rail or air links. Computer viruses can spread over computer networks. Rumours or news about business offers and deals can also spread via social networks of people. In all of these scenarios, a ‘contagion’ spreads over the links of a complex network, altering the ‘states’ of the nodes as it spreads, either recoverably or otherwise. For example, in an epidemiological scenario, individuals go from ‘susceptible’ to ‘infected’ state as the infection spreads. The states the individual nodes can take in the above examples could be binary (such as received/not received a piece of news), discrete (susceptible/infected/recovered), or even continuous (such as the proportion of infected people in a town), as the contagion spreads. The common feature in all these scenarios is that the spread of contagion results in the change of node states in networks. Percolation centrality (PC) was proposed with this in mind, which specifically measures the importance of nodes in terms of aiding the percolation through the network. This measure was proposed by Piraveenan et al.
   −
在复杂网络中,存在大量的中心性度量来确定单个节点的“重要性”。然而,这些度量单纯从拓扑学的角度来量化节点的重要性,节点的值并不以任何方式依赖于节点的状态。不管网络动态如何,它都保持不变。即使对于加权的两者之间的度量也是如此。然而,一个节点可能很好地位于中间中心性或其他中心性度量的中心位置,但可能不是位于有过滤的网络的上下文中的中心位置。在许多情况下,复杂网络中都会出现“传染”现象。例如,病毒或细菌感染可以通过人们的社交网络传播,也就是所谓的接触网络。还可以在更高的抽象层次上考虑疾病的传播问题,设想通过公路、铁路或空中连接起来的城镇或人口中心网络。计算机病毒可以通过计算机网络传播。关于商业活动和交易的谣言或新闻也可以通过人们的社交网络传播。在所有这些情况下,一种“传染病”在一个复杂网络的链接上传播,随着它的传播,无论是可恢复的还是不可恢复的,都会改变节点的“状态”。例如,在流行病学方案中,随着感染扩散,个人从”易感”状态转变为”受感染”状态。在上面的例子中,每个节点可以采取的状态可以是二进制的(例如接收/没有接收到一条新闻)、离散的(易感/受感染/康复) ,甚至是连续的(例如一个城镇中受感染的人的比例) ,随着传染的扩散。这些情景的共同特点是,传染的扩散导致网络中节点状态的改变。渗滤中心性(PC)就是基于这个思想而提出的,它特别地衡量了节点在协助网络渗滤方面的重要性。这项措施是由 piraveanan 等人提出的。
+
在复杂网络中,存在大量的中心性度量来确定单个节点的“重要性”。然而,这些度量单纯从拓扑学的角度来量化节点的重要性,节点的值并不以任何方式依赖于节点的状态。不管网络动态如何,它都保持不变。即使对于加权的两者之间的度量也是如此。然而,一个节点可能很好地位于中间中心性或其他中心性度量的中心位置,但可能不是位于有过滤的网络的上下文中的中心位置。在许多情况下,复杂网络中都会出现“传染”现象。例如,病毒或细菌感染可以通过人们的社交网络传播,也就是所谓的接触网络。还可以在更高的抽象层次上考虑疾病的传播问题,设想通过公路、铁路或空中连接起来的城镇或人口中心网络。计算机病毒可以通过计算机网络传播。关于商业活动和交易的谣言或新闻也可以通过人们的社交网络传播。在所有这些情况下,一种“传染病”在一个复杂网络的链接上传播,随着它的传播,无论是可恢复的还是不可恢复的,都会改变节点的“状态”。例如,在流行病学方案中,随着感染扩散,个人从”易感”状态转变为”受感染”状态。在上面的例子中,随着传染的扩散,每个节点可以采取的状态可以是二进制的(例如接收/没有接收到一条新闻)、离散的(易感/受感染/康复) ,甚至是连续的(例如一个城镇中受感染的人的比例) 。这些情景的共同特点是,传染的扩散导致网络中节点状态的改变。渗滤中心性(PC)就是基于这个思想而提出的,它特别地衡量了节点在协助网络渗滤方面的重要性。这项措施是由 piraveanan 等人提出的。
      第764行: 第764行:  
Percolation centrality is defined for a given node, at a given time, as the proportion of ‘percolated paths’ that go through that node. A ‘percolated path’ is a shortest path between a pair of nodes, where the source node is percolated (e.g., infected). The target node can be percolated or non-percolated, or in a partially percolated state.
 
Percolation centrality is defined for a given node, at a given time, as the proportion of ‘percolated paths’ that go through that node. A ‘percolated path’ is a shortest path between a pair of nodes, where the source node is percolated (e.g., infected). The target node can be percolated or non-percolated, or in a partially percolated state.
   −
过滤中心性定义为在给定时间内一个给定节点的过滤路径的比例。“渗滤路径”是一对节点之间的最短路径,其中源节点被渗滤(例如,被感染)。目标节点可以是过滤的或非过滤的,或处于部分过滤状态。
+
渗滤中心性定义为在给定时间内一个给定节点的过滤路径的比例。“渗滤路径”是一对节点之间的最短路径,其中源节点被渗滤(例如,被感染)。目标节点可以是过滤的或非过滤的,或处于部分过滤状态。
      第789行: 第789行:     
渗流路径的权重取决于分配给源节点的渗流水平,前提是源节点的渗流水平越高,源节点的路径就越重要。因此,位于源自高渗滤节点的最短路径上的节点可能对渗滤更为重要。PC 的定义也可以扩展到包括目标节点的权重。逾渗中心性计算运行在 < math > o (NM) </math > 时间,采用了 Brandes 快速算法的有效实现,如果计算需要考虑目标节点的权重,最坏情况下时间为 < math > o (n ^ 3) </math > 。
 
渗流路径的权重取决于分配给源节点的渗流水平,前提是源节点的渗流水平越高,源节点的路径就越重要。因此,位于源自高渗滤节点的最短路径上的节点可能对渗滤更为重要。PC 的定义也可以扩展到包括目标节点的权重。逾渗中心性计算运行在 < math > o (NM) </math > 时间,采用了 Brandes 快速算法的有效实现,如果计算需要考虑目标节点的权重,最坏情况下时间为 < math > o (n ^ 3) </math > 。
  −
      
==Cross-clique centrality==
 
==Cross-clique centrality==
561

个编辑

导航菜单