在直观的层面上,这个想法是联合分布P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总'''<font color='#ff8000'>复杂性complexity </font>'''低于到P(Effect)*P(Cause | Effect)的因式分解。尽管“复杂性”的概念在直觉上很吸引人,但是对于如何定义它却并不显而易见。另一种不同类族的方法尝试从大量标签过的数据中发现因果的“足迹”,并且允许预测更灵活的因果关系。 | 在直观的层面上,这个想法是联合分布P(Cause, Effect) 到 P(Cause)*P(Effect | Cause)的因式分解通常产生的模型的总'''<font color='#ff8000'>复杂性complexity </font>'''低于到P(Effect)*P(Cause | Effect)的因式分解。尽管“复杂性”的概念在直觉上很吸引人,但是对于如何定义它却并不显而易见。另一种不同类族的方法尝试从大量标签过的数据中发现因果的“足迹”,并且允许预测更灵活的因果关系。 |