更改

跳到导航 跳到搜索
添加105字节 、 2020年8月26日 (三) 10:42
第299行: 第299行:  
The incidence matrix of a signed graph is a generalization of the oriented incidence matrix. It is the incidence matrix of any bidirected graph that orients the given signed graph. The column of a positive edge has a 1 in the row corresponding to one endpoint and a −1 in the row corresponding to the other endpoint, just like an edge in an ordinary (unsigned) graph. The column of a negative edge has either a 1 or a −1 in both rows. The line graph and Kirchhoff matrix properties generalize to signed graphs.
 
The incidence matrix of a signed graph is a generalization of the oriented incidence matrix. It is the incidence matrix of any bidirected graph that orients the given signed graph. The column of a positive edge has a 1 in the row corresponding to one endpoint and a −1 in the row corresponding to the other endpoint, just like an edge in an ordinary (unsigned) graph. The column of a negative edge has either a 1 or a −1 in both rows. The line graph and Kirchhoff matrix properties generalize to signed graphs.
   −
有符号图的关联矩阵是有向关联矩阵的推广。它是定向给定有符号图的任意双向图的关联矩阵。正边的列在行中对应一个端点有一个1,在行中对应另一个端点有一个 -1,就像普通(无符号)图中的边一样。负边的列在两行中都有1或 -1。线图和 Kirchhoff 矩阵性质推广到符号图。
+
'''<font color="#ff8000">有符号图 Signed Graph</font>'''的关联矩阵是有向关联矩阵的推广。它是任意双向图的关联矩阵,为给定的有符号图定向。正边的列在对应一个端点的行有1,在对应于另一个端点的行中有 -1,就像普通'''<font color="#ff8000">(无符号)图 Unsigned Graph</font>'''中的边一样。负边的列在两行中都有1或 -1。线图和 Kirchhoff 矩阵性质都能推广到符号图中。
 
  −
 
      
===Multigraphs===
 
===Multigraphs===
274

个编辑

导航菜单