“李雅普诺夫函数”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
(Moved page from wikipedia:en:Lyapunov function (history))
 
第5行: 第5行:
 
In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov, Lyapunov functions (also called the Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.
 
In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov, Lyapunov functions (also called the Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.
  
在常微分方程理论中,李雅普诺夫函数是可用来证明常微分方程平衡点稳定性的标量函数。以俄罗斯数学家亚历山大·李亚普诺夫的名字命名的李雅普诺夫函数(也称为李雅普诺夫稳定性的第二种方法)对于动态系统的稳定性理论和控制理论是很重要的。在一般状态空间马尔可夫链理论中也出现了类似的概念,通常称为 Foster-Lyapunov 函数。
+
在常微分方程理论中,李雅普诺夫函数是可用来证明常微分方程平衡点稳定性的标量函数。以俄罗斯数学家亚历山大·李亚普诺夫的名字命名的李雅普诺夫函数(也称为李雅普诺夫稳定性的第二种方法)对于动态系统的稳定性理论和控制论是很重要的。在一般状态空间马尔可夫链理论中也出现了类似的概念,通常称为 Foster-Lyapunov 函数。
  
  
第13行: 第13行:
 
For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems; and conservation laws can often be used to construct Lyapunov functions for physical systems.
 
For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems; and conservation laws can often be used to construct Lyapunov functions for physical systems.
  
对于某些类型的常微分方程,李雅普诺夫函数的存在性是其稳定性的充要条件。尽管对于常微分方程没有构造李亚普诺夫函数的一般方法,但在许多具体情况下,李亚普诺夫函数的构造是已知的。例如,二次函数满足一个状态的系统; 一个特定线性矩阵不等式的解为线性系统提供了李雅普诺夫函数; 守恒律通常可以用来构造物理系统的李雅普诺夫函数。
+
对于某些类型的常微分方程,李雅普诺夫函数的存在性是其稳定性的充要条件。尽管对于常微分方程没有构造李雅普诺夫函数的一般方法,但在许多具体情况下,李雅普诺夫函数的构造是已知的。例如,二次函数满足一个状态的系统的李雅普诺夫函数;一个特定线性矩阵不等式的解为线性系统提供了李雅普诺夫函数;守恒律通常可以用来构造物理系统的李雅普诺夫函数。
  
  

2020年9月4日 (五) 09:55的版本

此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov, Lyapunov functions (also called the Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov, Lyapunov functions (also called the Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory. A similar concept appears in the theory of general state space Markov chains, usually under the name Foster–Lyapunov functions.

在常微分方程理论中,李雅普诺夫函数是可用来证明常微分方程平衡点稳定性的标量函数。以俄罗斯数学家亚历山大·李亚普诺夫的名字命名的李雅普诺夫函数(也称为李雅普诺夫稳定性的第二种方法)对于动态系统的稳定性理论和控制论是很重要的。在一般状态空间马尔可夫链理论中也出现了类似的概念,通常称为 Foster-Lyapunov 函数。


For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems; and conservation laws can often be used to construct Lyapunov functions for physical systems.

For certain classes of ODEs, the existence of Lyapunov functions is a necessary and sufficient condition for stability. Whereas there is no general technique for constructing Lyapunov functions for ODEs, in many specific cases the construction of Lyapunov functions is known. For instance, quadratic functions suffice for systems with one state; the solution of a particular linear matrix inequality provides Lyapunov functions for linear systems; and conservation laws can often be used to construct Lyapunov functions for physical systems.

对于某些类型的常微分方程,李雅普诺夫函数的存在性是其稳定性的充要条件。尽管对于常微分方程没有构造李雅普诺夫函数的一般方法,但在许多具体情况下,李雅普诺夫函数的构造是已知的。例如,二次函数满足一个状态的系统的李雅普诺夫函数;一个特定线性矩阵不等式的解为线性系统提供了李雅普诺夫函数;守恒律通常可以用来构造物理系统的李雅普诺夫函数。


Definition of a Lyapunov function

A Lyapunov function for an autonomous dynamical system

A Lyapunov function for an autonomous dynamical system

一个自治的李亚普诺夫函数动力系统


[math]\displaystyle{ \begin{cases} g : \R ^n \to \R ^n \\ \dot{y} = g(y) \end{cases} }[/math]

[math]\displaystyle{ \begin{cases} g : \R ^n \to \R ^n \\ \dot{y} = g(y) \end{cases} }[/math]

开始{ cases } g: r ^ n to r ^ n dot { y } g (y) end { cases } / math


with an equilibrium point at [math]\displaystyle{ y=0 }[/math] is a scalar function [math]\displaystyle{ V:\R^n\to\R }[/math] that is continuous, has continuous first derivatives, is locally positive-definite, and for which [math]\displaystyle{ -\nabla{V}\cdot g }[/math] is also locally positive definite. The condition that [math]\displaystyle{ -\nabla{V}\cdot g }[/math] is locally positive definite is sometimes stated as [math]\displaystyle{ \nabla{V}\cdot g }[/math] is locally negative definite.

with an equilibrium point at [math]\displaystyle{ y=0 }[/math] is a scalar function [math]\displaystyle{ V:\R^n\to\R }[/math] that is continuous, has continuous first derivatives, is locally positive-definite, and for which [math]\displaystyle{ -\nabla{V}\cdot g }[/math] is also locally positive definite. The condition that [math]\displaystyle{ -\nabla{V}\cdot g }[/math] is locally positive definite is sometimes stated as [math]\displaystyle{ \nabla{V}\cdot g }[/math] is locally negative definite.

在 math y 0 / math 上的平衡点是一个标量函数数学 v: r ^ n 到 r / math,它是连续的,有连续的一阶导数,是局部正定的,对于它,math-abla { v } cdot g / math 也是局部正定的。有时把 math-abla { v }-cdot g / math 局部正定的条件表述为 math-abla { v }-cdot g / math 局部负定。


Further discussion of the terms arising in the definition

Lyapunov functions arise in the study of equilibrium points of dynamical systems. In [math]\displaystyle{ \R^n, }[/math] an arbitrary autonomous dynamical system can be written as

Lyapunov functions arise in the study of equilibrium points of dynamical systems. In [math]\displaystyle{ \R^n, }[/math] an arbitrary autonomous dynamical system can be written as

李雅普诺夫函数出现在动力系统平衡点的研究中。在 math r ^ n 中,一个任意的自治动力系统可以被写成


[math]\displaystyle{ \dot{y} = g(y) }[/math]

[math]\displaystyle{ \dot{y} = g(y) }[/math]

数学(y) / 数学


for some smooth [math]\displaystyle{ g:\R^n \to \R^n. }[/math]

for some smooth [math]\displaystyle{ g:\R^n \to \R^n. }[/math]

对于一些平滑的数学 g: r ^ n to r ^ n / math


An equilibrium point is a point [math]\displaystyle{ y^* }[/math] such that [math]\displaystyle{ g(y^*)=0. }[/math] Given an equilibrium point, [math]\displaystyle{ y^*, }[/math] there always exists a coordinate transformation [math]\displaystyle{ x = y - y^*, }[/math] such that:

An equilibrium point is a point [math]\displaystyle{ y^* }[/math] such that [math]\displaystyle{ g(y^*)=0. }[/math] Given an equilibrium point, [math]\displaystyle{ y^*, }[/math] there always exists a coordinate transformation [math]\displaystyle{ x = y - y^*, }[/math] such that:

平衡点是一个点数学 y ^ * / 数学,这样的数学 g (y ^ *)0。 / math 给定一个平衡点,数学 y ^ * ,/ math 总是存在一个坐标变换,数学 x y-y ^ * ,/ 这样的数学:


[math]\displaystyle{ \begin{cases} \dot{x} = \dot{y} = g(y) = g(x + y^*) = f(x) \\ f(0) = 0 \end{cases} }[/math]

[math]\displaystyle{ \begin{cases} \dot{x} = \dot{y} = g(y) = g(x + y^*) = f(x) \\ f(0) = 0 \end{cases} }[/math]

数学开始{情况} dot { y } g (x + y ^ *) f (x) f (0)0 end { cases } / math


Thus, in studying equilibrium points, it is sufficient to assume the equilibrium point occurs at [math]\displaystyle{ 0 }[/math].

Thus, in studying equilibrium points, it is sufficient to assume the equilibrium point occurs at [math]\displaystyle{ 0 }[/math].

因此,在研究平衡点时,只要假设平衡点出现在数学0 / math 中就足够了。


By the chain rule, for any function, [math]\displaystyle{ H:\R^n \to \R, }[/math] the time derivative of the function evaluated along a solution of the dynamical system is

By the chain rule, for any function, [math]\displaystyle{ H:\R^n \to \R, }[/math] the time derivative of the function evaluated along a solution of the dynamical system is

根据链式法则,对于任何函数,算法 h: r ^ n to r,/ 算法沿动力系统解求出的函数的时间导数是


[math]\displaystyle{ \dot{H} = \frac{d}{dt} H(x(t)) = \frac{\partial H}{\partial x}\cdot \frac{dx}{dt} = \nabla H \cdot \dot{x} = \nabla H\cdot f(x). }[/math]

[math]\displaystyle{ \dot{H} = \frac{d}{dt} H(x(t)) = \frac{\partial H}{\partial x}\cdot \frac{dx}{dt} = \nabla H \cdot \dot{x} = \nabla H\cdot f(x). }[/math]

Math dot { h frac { dt } h (x (t)) frac { partial x } cdot frac { dt nabla h nabla h dot f (x) . / math


A function [math]\displaystyle{ H }[/math] is defined to be locally positive-definite function (in the sense of dynamical systems) if both [math]\displaystyle{ H(0) = 0 }[/math] and there is a neighborhood of the origin, [math]\displaystyle{ \mathcal{B} }[/math], such that:

A function [math]\displaystyle{ H }[/math] is defined to be locally positive-definite function (in the sense of dynamical systems) if both [math]\displaystyle{ H(0) = 0 }[/math] and there is a neighborhood of the origin, [math]\displaystyle{ \mathcal{B} }[/math], such that:

函数数学 h / math 被定义为局部正定函数(在动力系统的意义上) ,如果数学 h (0)0 / math 和它的起源有一个邻居 math / math,比如:


[math]\displaystyle{ H(x) \gt 0 \quad \forall x \in \mathcal{B} \setminus\{0\} . }[/math]

[math]\displaystyle{ H(x) \gt 0 \quad \forall x \in \mathcal{B} \setminus\{0\} . }[/math]

数学 h (x)0对于数学中的所有 x-0. /


Basic Lyapunov theorems for autonomous systems

模板:Main article


Let [math]\displaystyle{ x^* = 0 }[/math] be an equilibrium of the autonomous system

Let [math]\displaystyle{ x^* = 0 }[/math] be an equilibrium of the autonomous system

让数学 x ^ * 0 / 数学成为自治系统的均衡

[math]\displaystyle{ \dot{x} = f(x). }[/math]

[math]\displaystyle{ \dot{x} = f(x). }[/math]

Math x } f (x) . / math

and use the notation [math]\displaystyle{ \dot{V}(x) }[/math] to denote the time derivative of the Lyapunov-candidate-function [math]\displaystyle{ V }[/math]:

and use the notation [math]\displaystyle{ \dot{V}(x) }[/math] to denote the time derivative of the Lyapunov-candidate-function [math]\displaystyle{ V }[/math]:

并使用 math dot { v }(x) / math 表示 Lyapunov-candidate-function math v / math 的时间导数:

[math]\displaystyle{ \dot{V}(x) = \frac{d}{dt} V(x(t)) = \frac{\partial V}{\partial x}\cdot \frac{dx}{dt} = \nabla V \cdot \dot{x} = \nabla V\cdot f(x). }[/math]

[math]\displaystyle{ \dot{V}(x) = \frac{d}{dt} V(x(t)) = \frac{\partial V}{\partial x}\cdot \frac{dx}{dt} = \nabla V \cdot \dot{x} = \nabla V\cdot f(x). }[/math]

(x) frac { dt } v (x (t)) frac { partial x } dot frac { dt } nabla v nabla v nabla f (x) / math



Locally asymptotically stable equilibrium

If the equilibrium is isolated, the Lyapunov-candidate-function [math]\displaystyle{ V }[/math] is locally positive definite and the time derivative of the Lyapunov-candidate-function is locally negative definite:

If the equilibrium is isolated, the Lyapunov-candidate-function [math]\displaystyle{ V }[/math] is locally positive definite and the time derivative of the Lyapunov-candidate-function is locally negative definite:

如果平衡点是孤立的,李亚普诺夫候选函数数学 v / math 是局部正定的,李亚普诺夫候选函数的时间导数是局部负定的:

[math]\displaystyle{ \dot{V}(x) \lt 0 \quad \forall x \in \mathcal{B}\setminus\{0\} }[/math]

[math]\displaystyle{ \dot{V}(x) \lt 0 \quad \forall x \in \mathcal{B}\setminus\{0\} }[/math]

对于数学中的所有 x-0-0 / math

for some neighborhood [math]\displaystyle{ \mathcal{B} }[/math] of origin then the equilibrium is proven to be locally asymptotically stable.

for some neighborhood [math]\displaystyle{ \mathcal{B} }[/math] of origin then the equilibrium is proven to be locally asymptotically stable.

对于某些邻域数学[ b ] / 原点数学,证明了平衡点是局部渐近稳定的。


Stable equilibrium

If [math]\displaystyle{ V }[/math] is a Lyapunov function, then the equilibrium is Lyapunov stable.

If [math]\displaystyle{ V }[/math] is a Lyapunov function, then the equilibrium is Lyapunov stable.

如果数学 v / math 是李亚普诺夫函数,那么平衡是 Lyapunov 稳定的。


The converse is also true, and was proved by J. L. Massera.

The converse is also true, and was proved by J. L. Massera.

反之亦然,j · l · 马塞拉证明了这一点。


Globally asymptotically stable equilibrium

If the Lyapunov-candidate-function [math]\displaystyle{ V }[/math] is globally positive definite, radially unbounded, the equilibrium isolated and the time derivative of the Lyapunov-candidate-function is globally negative definite:

If the Lyapunov-candidate-function [math]\displaystyle{ V }[/math] is globally positive definite, radially unbounded, the equilibrium isolated and the time derivative of the Lyapunov-candidate-function is globally negative definite:

如果李亚普诺夫候选函数数学 v / math 是全局正定的,径向无界的,李亚普诺夫候选函数的平衡点孤立的和时间导数是全局负定的:

[math]\displaystyle{ \dot{V}(x) \lt 0 \quad \forall x \in \R ^n\setminus\{0\}, }[/math]

[math]\displaystyle{ \dot{V}(x) \lt 0 \quad \forall x \in \R ^n\setminus\{0\}, }[/math]

对于所有的 x 在 r ^ n setminus 0,/ math

then the equilibrium is proven to be globally asymptotically stable.

then the equilibrium is proven to be globally asymptotically stable.

然后证明了平衡点是全局渐近稳定的。


The Lyapunov-candidate function [math]\displaystyle{ V(x) }[/math] is radially unbounded if

The Lyapunov-candidate function [math]\displaystyle{ V(x) }[/math] is radially unbounded if

李雅普诺夫候选函数数学 v (x) / 数学是径向无界的

[math]\displaystyle{ \| x \| \to \infty \Rightarrow V(x) \to \infty. }[/math]

[math]\displaystyle{ \| x \| \to \infty \Rightarrow V(x) \to \infty. }[/math]

数学下划线 v (x)下划线 v (x)。数学

(This is also referred to as norm-coercivity.)

(This is also referred to as norm-coercivity.)

(这也被称为范数强制。)


Example

Consider the following differential equation with solution [math]\displaystyle{ x }[/math] on [math]\displaystyle{ \R }[/math]:

Consider the following differential equation with solution [math]\displaystyle{ x }[/math] on [math]\displaystyle{ \R }[/math]:

考虑一下下面的关于数学 x / math 和数学 r / math 的微分方程:


[math]\displaystyle{ \dot x = -x. }[/math]

[math]\displaystyle{ \dot x = -x. }[/math]

Math dot x-x / math


Considering that [math]\displaystyle{ x^2 }[/math] is always positive around the origin it is a natural candidate to be a Lyapunov function to help us study [math]\displaystyle{ x }[/math].

Considering that [math]\displaystyle{ x^2 }[/math] is always positive around the origin it is a natural candidate to be a Lyapunov function to help us study [math]\displaystyle{ x }[/math].

考虑到数学 x ^ 2 / math 在原点周围总是正的,这是一个帮助我们学习数学 x / math 的自然候选李亚普诺夫函数。

So let [math]\displaystyle{ V(x)=x^2 }[/math] on [math]\displaystyle{ \R }[/math]. Then,

So let [math]\displaystyle{ V(x)=x^2 }[/math] on [math]\displaystyle{ \R }[/math]. Then,

让数学 v (x) x ^ 2 / math on math r / math。然后,


[math]\displaystyle{ \dot V(x) = V'(x) \dot x = 2x\cdot (-x) = -2x^2\lt 0. }[/math]

[math]\displaystyle{ \dot V(x) = V'(x) \dot x = 2x\cdot (-x) = -2x^2\lt 0. }[/math]

math dot v (x) v’(x) dot x2x cdot (- x-rrb--2 x ^ 20. / math


This correctly shows that the above differential equation, [math]\displaystyle{ x, }[/math] is asymptotically stable about the origin. Note that using the same Lyapunov candidate one can show that the equilibrium is also globally asymptotically stable.

This correctly shows that the above differential equation, [math]\displaystyle{ x, }[/math] is asymptotically stable about the origin. Note that using the same Lyapunov candidate one can show that the equilibrium is also globally asymptotically stable.

这正确地表明,上面的微分方程,math x,/ math 关于原点是渐近稳定的。注意,使用相同的李亚普诺夫候选者可以证明平衡点也是全局渐近稳定的。


See also


References

  • Khalil, H.K. (1996). Nonlinear systems. Prentice Hall Upper Saddle River, NJ. 
  • La Salle, Joseph; Lefschetz, Solomon (1961). Stability by Liapunov's Direct Method: With Applications. New York: Academic Press. 


External links

  • Example of determining the stability of the equilibrium solution of a system of ODEs with a Lyapunov function

Category:Stability theory

范畴: 稳定性理论


This page was moved from wikipedia:en:Lyapunov function. Its edit history can be viewed at 李雅普诺夫函数/edithistory