第7行: |
第7行: |
| In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book What is Life? Later, Léon Brillouin shortened the phrase to negentropy. In 1974, Albert Szent-Györgyi proposed replacing the term negentropy with syntropy. That term may have originated in the 1940s with the Italian mathematician Luigi Fantappiè, who tried to construct a unified theory of biology and physics. Buckminster Fuller tried to popularize this usage, but negentropy remains common. | | In information theory and statistics, negentropy is used as a measure of distance to normality. The concept and phrase "negative entropy" was introduced by Erwin Schrödinger in his 1944 popular-science book What is Life? Later, Léon Brillouin shortened the phrase to negentropy. In 1974, Albert Szent-Györgyi proposed replacing the term negentropy with syntropy. That term may have originated in the 1940s with the Italian mathematician Luigi Fantappiè, who tried to construct a unified theory of biology and physics. Buckminster Fuller tried to popularize this usage, but negentropy remains common. |
| | | |
− | 在信息论和统计学中,负熵被用来度量到正态的距离。“负熵”这个概念和短语是由埃尔温·薛定谔在他1944年的科普著作《什么是生命?后来,l 把这个短语缩短为负熵。1974年,圣捷尔吉·阿尔伯特提出用同向性代替负熵。这个术语可能起源于20世纪40年代意大利数学家 Luigi fantappi,他试图建立一个生物学和物理学的统一理论。巴克敏斯特·福乐试图推广这种用法,但是负熵仍然很常见。
| + | 在信息论和统计学中,负熵被用来度量与正态分布之间的距离。“负的熵”这个概念和短语是由埃尔温·薛定谔在他1944年的科普著作《生命是什么?》引入,后来莱昂·布里渊 把这个短语缩写为“负熵”。1974年, 阿尔伯特·圣捷尔吉提出用短语“同向”代替“负熵”。这个术语可能起源于20世纪40年代意大利数学家 Luigi fantappi,他试图建立一个生物学和物理学的统一理论。巴克敏斯特·福乐试图推广这种用法,但是负熵仍然很常用。 |
| | | |
| | | |
第15行: |
第15行: |
| In a note to What is Life? Schrödinger explained his use of this phrase. | | In a note to What is Life? Schrödinger explained his use of this phrase. |
| | | |
− | 在《什么是生活?薛定谔解释了他使用这个短语的原因。
| + | 在《生命是什么?》的一个附注中,薛定谔解释了他使用这个短语的原因。 |
| | | |
| {{cquote|... if I had been catering for them [physicists] alone I should have let the discussion turn on ''[[Thermodynamic free energy|free energy]]'' instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to ''[[energy]]'' for making the average reader alive to the contrast between the two things.}} | | {{cquote|... if I had been catering for them [physicists] alone I should have let the discussion turn on ''[[Thermodynamic free energy|free energy]]'' instead. It is the more familiar notion in this context. But this highly technical term seemed linguistically too near to ''[[energy]]'' for making the average reader alive to the contrast between the two things.}} |
| | | |
− | | + | 如果我只是迎合他们物理学家,我应该让讨论转向“[[热力学自由能|自由能]]”。在这个语境中,自由能是更熟悉的概念。但是,这个高度专业的术语在语言学上似乎太接近于“[[能量]]”,无法让普通读者生动地看到两者之间的区别。 |
| | | |
| In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos.<ref>Mahulikar, S.P. & Herwig, H.: (2009) "Exact thermodynamic principles for dynamic order existence and evolution in chaos", ''Chaos, Solitons & Fractals'', v. '''41(4)''', pp. 1939–1948</ref> Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: ''i'') scale-invariant thermodynamic representation of dynamic order existence, ''ii'') formulation of physical principles exclusively for dynamic order existence and evolution, and ''iii'') mathematical interpretation of Schrödinger's negentropy debt. | | In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos.<ref>Mahulikar, S.P. & Herwig, H.: (2009) "Exact thermodynamic principles for dynamic order existence and evolution in chaos", ''Chaos, Solitons & Fractals'', v. '''41(4)''', pp. 1939–1948</ref> Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: ''i'') scale-invariant thermodynamic representation of dynamic order existence, ''ii'') formulation of physical principles exclusively for dynamic order existence and evolution, and ''iii'') mathematical interpretation of Schrödinger's negentropy debt. |
第25行: |
第25行: |
| In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos. Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: i) scale-invariant thermodynamic representation of dynamic order existence, ii) formulation of physical principles exclusively for dynamic order existence and evolution, and iii) mathematical interpretation of Schrödinger's negentropy debt. | | In 2009, Mahulikar & Herwig redefined negentropy of a dynamically ordered sub-system as the specific entropy deficit of the ordered sub-system relative to its surrounding chaos. Thus, negentropy has SI units of (J kg<sup>−1</sup> K<sup>−1</sup>) when defined based on specific entropy per unit mass, and (K<sup>−1</sup>) when defined based on specific entropy per unit energy. This definition enabled: i) scale-invariant thermodynamic representation of dynamic order existence, ii) formulation of physical principles exclusively for dynamic order existence and evolution, and iii) mathematical interpretation of Schrödinger's negentropy debt. |
| | | |
− | 2009年,Mahulikar & Herwig 将动态有序子系统的负熵重新定义为有序子系统相对于周围混沌的特定熵赤字。因此,根据单位质量比熵定义负熵的 SI 单位为(j kg sup-1 / sup k sup-1 / sup) ,根据单位能量比熵定义负熵的 SI 单位为(k sup-1 / sup)。这个定义实现了: i)动态有序存在的尺度不变热力学表示,ii)专门为动态有序存在和演化而制定的物理原理,iii)薛定谔负熵债的数学解释。 | + | 2009年,Mahulikar 和 Herwig 将动态有序子系统的负熵重新定义为有序子系统相对于周围混沌的特定熵赤字。因此,根据单位质量比熵定义负熵的 SI 单位为(j kg sup-1 / sup k sup-1 / sup) ,根据单位能量比熵定义负熵的 SI 单位为(k sup-1 / sup)。这个定义实现了: i)动态有序存在的尺度不变热力学表示,ii)专门为动态有序存在和演化而制定的物理原理,iii)薛定谔负熵债的数学解释。 |
| | | |
| | | |