More generally, the degree sequence of a hypergraph is the non-increasing sequence of its vertex degrees. A sequence is <math>k</math>-graphic if it is the degree sequence of some <math>k</math>-uniform hypergraph. In particular, a <math>2</math>-graphic sequence is graphic. Deciding if a given sequence is <math>k</math>-graphic is doable in polynomial time for <math>k=2</math> via the Erdős–Gallai theorem but is NP-complete for all <math>k\ge 3</math> (Deza et al., 2018 ). | More generally, the degree sequence of a hypergraph is the non-increasing sequence of its vertex degrees. A sequence is <math>k</math>-graphic if it is the degree sequence of some <math>k</math>-uniform hypergraph. In particular, a <math>2</math>-graphic sequence is graphic. Deciding if a given sequence is <math>k</math>-graphic is doable in polynomial time for <math>k=2</math> via the Erdős–Gallai theorem but is NP-complete for all <math>k\ge 3</math> (Deza et al., 2018 ). |