更改

跳到导航 跳到搜索
删除2字节 、 2020年9月27日 (日) 11:39
第80行: 第80行:     
Kolmogorov分布是随机变量的分布
 
Kolmogorov分布是随机变量的分布
 +
 +
<math>K=\sup_{t\in[0,1]}|B(t)|</math>
    
where B(t) is the Brownian bridge. The cumulative distribution function of K is given by
 
where B(t) is the Brownian bridge. The cumulative distribution function of K is given by
第86行: 第88行:     
\operatorname{Pr}(K\leq x)=1-2\sum_{k=1}^\infty (-1)^{k-1} e^{-2k^2 x^2}=\frac{\sqrt{2\pi}}{x}\sum_{k=1}^\infty e^{-(2k-1)^2\pi^2/(8x^2)},
 
\operatorname{Pr}(K\leq x)=1-2\sum_{k=1}^\infty (-1)^{k-1} e^{-2k^2 x^2}=\frac{\sqrt{2\pi}}{x}\sum_{k=1}^\infty e^{-(2k-1)^2\pi^2/(8x^2)},
  −
:<math>K=\sup_{t\in[0,1]}|B(t)|</math>
  −
      
which can also be expressed by the Jacobi theta function \vartheta_{01}(z=0;\tau=2ix^2/\pi). Both the form of the Kolmogorov–Smirnov test statistic and its asymptotic distribution under the null hypothesis were published by Andrey Kolmogorov, while a table of the distribution was published by Nikolai Smirnov. Recurrence relations for the distribution of the test statistic in finite samples are available.
 
which can also be expressed by the Jacobi theta function \vartheta_{01}(z=0;\tau=2ix^2/\pi). Both the form of the Kolmogorov–Smirnov test statistic and its asymptotic distribution under the null hypothesis were published by Andrey Kolmogorov, while a table of the distribution was published by Nikolai Smirnov. Recurrence relations for the distribution of the test statistic in finite samples are available.
961

个编辑

导航菜单