第81行: |
第81行: |
| | | |
| | | |
− | ===Random network=== | + | === Random network 随机网络 === |
| | | |
| {{Main article|Erdős–Rényi model}} | | {{Main article|Erdős–Rényi model}} |
| | | |
− | | + | Using <math>\langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1)</math> for an [[Erdős–Rényi model|Erdős–Rényi (ER) random graph]], one can re-express the critical point for a random network. |
− | | |
− | Using <math>\langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1)</math> for an [[Erdős–Rényi model|Erdős–Rényi (ER) random graph]], one can re-express the critical point for a random network.<ref name="NetworkBook">ALBERT-LÁSZLÓ BARABÁSI. Network Science (2014).</ref> | |
| | | |
| Using <math>\langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1)</math> for an Erdős–Rényi (ER) random graph, one can re-express the critical point for a random network. | | Using <math>\langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1)</math> for an Erdős–Rényi (ER) random graph, one can re-express the critical point for a random network. |
| | | |
− | 利用随机图的 < math > > langle k ^ 2 rangle = langle k rangle (langle k rangle + 1) </math > ,可以重新表示随机网络的临界点。
| + | 使用 <math>\langle k^2 \rangle = \langle k \rangle(\langle k \rangle+1)</math> 表示Erdős-Rényi(ER)随机图,可以重新表达随机网络的临界点。 |
− | | |
− | | |
| | | |
− | <math>
| |
| | | |
| <math> | | <math> |
− |
| |
− | 《数学》
| |
− |
| |
− | \begin{align}
| |
− |
| |
− | \begin{align}
| |
− |
| |
− | 开始{ align }
| |
| | | |
| f_c^{ER}=1-\frac{1}{\langle k \rangle} | | f_c^{ER}=1-\frac{1}{\langle k \rangle} |
− |
| |
− | f_c^{ER}=1-\frac{1}{\langle k \rangle}
| |
− |
| |
− | 1-frac {1}{ langle k rangle }
| |
− |
| |
− | \end{align}
| |
− |
| |
− | \end{align}
| |
− |
| |
− | 结束{ align }
| |
− |
| |
− | </math>
| |
| | | |
| </math> | | </math> |
− |
| |
− | 数学
| |
− |
| |
| | | |
| | | |
第131行: |
第103行: |
| As a random network gets denser, the critical threshold increases, meaning a higher fraction of the nodes must be removed to disconnect the giant component. | | As a random network gets denser, the critical threshold increases, meaning a higher fraction of the nodes must be removed to disconnect the giant component. |
| | | |
− | 随着随机网络的密度增加,临界阈值增加,这意味着必须删除更高的节点分数以断开巨型组件的连接。
| + | 随着随机网络变得越来越密集,临界阈值会增加,这意味着必须删除更高比例的节点才能断开巨型组件的连接。 |
− | | |
− | | |
| | | |
| ===Scale-free network=== | | ===Scale-free network=== |