Deleting the row and column of \Delta corresponding with the sink yields the reduced graph Laplacian \Delta'. Then, when starting with a configuration z and toppling each vertex v a total of \mathbf{x}(v)\in\mathbb{N}_0 times yields the configuration z-\Delta'\boldsymbol{\cdot}~\mathbf{x}, where \boldsymbol{\cdot} is the contraction product. Furthermore, if \mathbf{x} corresponds to the number of times each vertex is toppled during the stabilization of a given configuration z, then | Deleting the row and column of \Delta corresponding with the sink yields the reduced graph Laplacian \Delta'. Then, when starting with a configuration z and toppling each vertex v a total of \mathbf{x}(v)\in\mathbb{N}_0 times yields the configuration z-\Delta'\boldsymbol{\cdot}~\mathbf{x}, where \boldsymbol{\cdot} is the contraction product. Furthermore, if \mathbf{x} corresponds to the number of times each vertex is toppled during the stabilization of a given configuration z, then |