“条件熵”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
(Moved page from wikipedia:en:Conditional entropy (history))
 
(Moved page from wikipedia:en:Conditional entropy (history))
第1行: 第1行:
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。{{Short description|Measure of relative information in probability theory}}
+
此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。
 
 
  
 +
{{Short description|Measure of relative information in probability theory}}
  
 
{{Information theory}}
 
{{Information theory}}
 
 
 
 
  
  
第15行: 第11行:
 
[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
 
[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
  
显示加减关系的文氏图各种信息测量与相关变量数学 x / 数学和 y / 数学相关。两个圆所包含的面积是联合熵 math  Eta (x,y) / math。左边的圆圈(红色和紫色)是个体熵数学 Eta (x) / math,红色的是条件熵数学 Eta (x | y) / math。右边的圆(蓝色和紫色)是 math Eta (y) / math,蓝色的是 math Eta (y | x) / math。紫色是互信息 math operatorname { i }(x; y) / math. ]
+
文恩图显示了相加和相减的关系,各种信息测量与相关变量相关。两个圆圈所包含的区域是联合熵。左边的圆圈(红色和紫色)代表个体熵。左边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体。右边的圆圈(蓝色和紫色)是 < math > Eta (y) </math > ,蓝色的是 < math > Eta (y | x) </math > 。紫色是共同的信息[ math > 操作者名称{ i }(x; y) </math > ]
  
  
  
 +
In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
  
 +
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
  
In [[information theory]], the '''conditional entropy''' (or '''equivocation''') quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
+
在信息论中,如果另一个随机变量的值是已知的,那么条件熵就会量化描述一个随机变量的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。“数学”的熵取决于“数学” ,“ x”表示“数学” ,“埃塔”表示“数学”。
  
In information theory, the conditional entropy (or equivocation) quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
 
  
在信息论中,假设另一个随机变量 math x / math 的值是已知的,信息条件熵量化描述随机变量 math y / math 的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。数学 y / 数学的熵以数学 x / 数学为条件,表示为数学 Eta (y | x) / 数学。
 
 
 
 
 
 
== Definition ==
 
  
 
== Definition ==
 
== Definition ==
 
定义
 
  
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
第41行: 第29行:
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
  
数学 y / 数学给定数学 x / 数学的条件熵定义为
+
给定的 x 条件熵被定义为
 
 
 
 
  
  
第57行: 第43行:
 
|indent =
 
|indent =
  
不会有事的
+
2012年10月22日
  
 
|title=
 
|title=
第63行: 第49行:
 
|title=
 
|title=
  
标题
+
2012年10月11日
  
 
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
 
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
第69行: 第55行:
 
|equation = }}
 
|equation = }}
  
会公式开始
+
| equation = }
  
 
|cellpadding= 6
 
|cellpadding= 6
第75行: 第61行:
 
|cellpadding= 6
 
|cellpadding= 6
  
6号手术室
+
6
  
 
|border
 
|border
第93行: 第79行:
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
  
5 / fffa }
+
5/fffa }}
 
 
 
 
  
  
第103行: 第87行:
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
  
其中 math mathcal x / math 和 math mathcal y / math 表示数学 x / math 和数学 y / math 的支持集。
+
这里 < math > 数学 x </math > < math > > 数学 y </math > 表示 < math > x </math > 和 < math > y </math > 的支持集。
 
 
 
 
  
  
第111行: 第93行:
 
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
 
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
  
Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
+
Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math>
 
 
注意: 对于固定数学 c 0 / math,表达式 math 0 log 0 / math 和 math 0 log c / 0 / math 应当被视为等于零。这是因为 math  theta 0 ^ + theta  log  theta 0 / math 和 math  theta 0 ^ + theta  log  theta 0 / math! -- 因为 p (x,y)仍然可以等于0,即使 p (x) ! 0和 p (y) ! 0.P (x,y) p (x)0怎么样?-->
 
 
 
  
 +
注意: 常规的表达式 < math > 0 log 0 </math > 和 < math > 0 log c/0 </math > 对于 fixed < math > c > 0 </math > 应该被视为等于零。这是因为 < math > lim { theta to0 ^ + } theta,log,c/theta = 0 </math > 和 < math > lim { theta to0 ^ + } theta,log theta = 0 </math >
  
  
第121行: 第101行:
 
Intuitive explanation of the definition :  
 
Intuitive explanation of the definition :  
  
Intuitive explanation of the definition :
+
The chain rule follows from the above definition of conditional entropy:
 
 
对定义的直观解释:
 
 
 
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log_{2}( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
 
 
 
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log_{2}( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
 
 
 
根据定义,math  displaystyle h (y | x) mathbb { e }( f (x,y)) / math  displaystyle f: (x,y) righttarrow  log {2}( p (y | x))。 / math  displaystyle f / math 联想到 math  displaystyle (x,y) / math 数学数学 displaystyle (y) / math 给定的 math  displaystyle (x) / math,这是描述事件数学 displaystyle (y) / math 给定的 math (x) / math 所需的信息量。根据大数定律,math  displaystyle h (y | x) / math 是 math  displaystyle f (x,y) / math 的大量独立实现的算术平均数。
 
 
 
 
 
  
 +
链式规则遵循了上述条件熵的定义:
  
 +
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
  
  
  
 +
<math>\begin{align}
  
 +
1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3
  
 
== Motivation ==
 
== Motivation ==
  
== Motivation ==
+
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
  
动机
+
Eta (y | x) & = sum _ { x in mathcal x,y in mathcal y } p (x,y) log left (frac { p (x)}{ p (x,y)} right)[4 pt ]
  
 
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
 
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
  
Let <math>\Eta(Y|X=x)</math> be the entropy of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have probability mass function <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
+
&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
  
设数学是离散型随机变量数学 y / math 的熵,条件是离散型随机变量数学 x / math 取一定值数学 x / math。用 math  mathcal x / math 和 math  mathcal y / math 表示数学 x / math 和数学 y / math 的支持集。让数学 y / 数学有概率质量函数 / 数学 p {(y)} / 数学。数学 y / math 的无条件熵计算为 math  Eta (y) :  mathbb { e }[ operatorname { i }(y)] / math,即。
+
& = sum _ { x in mathcal x,y in mathcal y } p (x,y)(log (p (x))-log (p (x,y)))[4 pt ]
  
  
  
 +
&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
  
 +
& =-sum _ { x in mathcal x,y in mathcal y } p (x,y) log (p (x,y)) + sum _ { x in mathcal x,y in mathcal y }{ p (x,y) log (p (x))}[4 pt ]
  
 
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
 
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
  
<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}
+
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
  
数学中的 Eta (y)(y)(y)(y)(y)(y)(y)
+
& = Eta (x,y) + sum _ { x in mathcal x } p (x) log (p (x))[4 pt ]
  
 
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
 
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
  
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
+
& = \Eta(X,Y) - \Eta(X).
  
- 和数学 y }{ py (y) log 2{ py (y)} ,/ math
+
& = Eta (x,y)-Eta (x).
  
  
  
 +
\end{align}</math>
  
 +
结束{ align } </math >
  
 
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
 
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
 
where <math>\operatorname{I}(y_i)</math> is the information content of the outcome of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by conditional expectation:
 
 
其中 math  operatorname { i }(yi) / math 是取值 math y / math 的数学 y / math 结果的信息内容。数学 y / 数学的熵取决于数学 x / 数学的取值,数学 x / 数学的定义类似于条件期望的定义:
 
  
  
  
 +
In general, a chain rule for multiple random variables holds:
  
 +
一般来说,多个随机变量的链式规则适用于:
  
 
:<math>\Eta(Y|X=x)
 
:<math>\Eta(Y|X=x)
  
<math>\Eta(Y|X=x)
+
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
  
(y | x)
+
<math> \Eta(X_1,X_2,\ldots,X_n) =
  
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. </math>
+
< math > Eta (x1,x2,ldots,xn) =  
  
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. </math>
+
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
 
 
- 和数学 y }{ Pr (y | x) log 2{ Pr (y | x)}。数学
 
 
 
 
 
 
 
 
 
 
 
<math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take.
 
 
 
<math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take.
 
 
 
数学是对所有可能的数值求平均值的结果,数学 x / 数学可能需要。
 
  
 +
\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
  
 +
Sum { i = 1} ^ n Eta (x _ i | x _ 1,ldots,x _ { i-1}) </math >
  
  
第209行: 第175行:
 
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
 
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
  
Given discrete random variables <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:
+
It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
 
 
给定离散随机变量数学 x / 数学 x / 数学 x / 数学 y / 数学 y / 数学,数学 y / 数学 x / 数学的条件熵定义为数学 x / 数学每个可能值的加权和,用数学 p (x) / 数学作为权重:
 
 
 
  
 +
除了用加法代替乘法之外,它的形式与概率论的链式法则相似。
  
  
  
 
:<math>
 
:<math>
 
<math>
 
 
数学
 
  
 
\begin{align}
 
\begin{align}
  
\begin{align}
+
Bayes' rule for conditional entropy states
  
Begin { align }
+
条件熵的贝叶斯规则
  
 
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
 
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
  
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
+
<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
 
数学 x 中的 Eta (y | x) ,p (x) ,Eta (y | x)
 
  
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
+
[数学] Eta (y | x) ,= ,Eta (x | y)-Eta (x) + Eta (y)  
  
 
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
 
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
 
数学 x } p (x) sum y } ,p (y | x) ,log,p (y | x)
 
  
 
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
  
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
+
Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
 
数学中的 x 和 y,p (x,y) ,log,p (y | x)
 
  
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
+
证据。Eta (y | x) = Eta (x,y)-Eta (x) | math > Eta (x | y) = Eta (y,x)-Eta (y).对称意味着 Eta (x,y) = Eta (y,x)。减去这两个方程就得到了贝叶斯定律。
  
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
 
数学 x,y = p (x,y) log,p (y | x)
 
  
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
  
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
+
If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
  
(x,y) log-frac { p (x,y)}{ p (x,y)}.\\
+
如果[数学] y </math > 是条件独立于[数学] z </math > 给定 < 数学 > x </math > 我们有:
 
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
  
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
(x,y) log  frac { p (x)}{ p (x,y)}.\\
 
  
 
\end{align}
 
\end{align}
  
\end{align}
+
<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
  
End { align }
+
[ math ] Eta (y | x,z) ,= ,Eta (y | x)
  
 
</math>
 
</math>
 
</math>
 
 
数学
 
 
 
  
  
第283行: 第225行:
 
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
 
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
  
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the Kullback-Leibler divergence, also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
+
For any <math>X</math> and <math>Y</math>:
  
<! -- 本段不正确; 最后一行不是任何两个分布之间的 KL 散度,因为 p (x)[一般]不是 x 和 y 域上的有效分布。上面的最后一个公式是 Kullback-Leibler 的背离,也被称为相对熵。相对熵总是正的,只有当且仅当数学 p (x,y) p (x) / math 时才消失。这是当我们知道数学 x / 数学告诉我们关于数学 y / 数学的一切。补充: 这个评论是否过时了,因为 KL 的分歧没有在上面提到?2014年11月--
+
对于任意的 < math > x </math > < math > > y </math > :
  
  
  
 +
<math display="block">\begin{align}
  
 +
(数学显示 = “ block” > begin { align })
  
 
==Properties==
 
==Properties==
  
==Properties==
+
  \Eta(Y|X) &\le \Eta(Y) \, \\
  
属性
+
埃塔(y | x)及埃塔(y) ,
  
 
===Conditional entropy equals zero===
 
===Conditional entropy equals zero===
  
===Conditional entropy equals zero===
+
  \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
  
条件熵等于零
+
eta (x,y) & = Eta (x | y) + Eta (y | x) + 操作数名{ i }(x; y) ,qquad
  
 
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
 
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
  
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
+
  \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
  
Math  Eta (y | x)0 / math 当且仅当 math y / math 的值完全由 math x / math 的值决定。
+
Eta (x,y) & = Eta (x) + Eta (y)-操作员名称{ i }(x; y) ,,
  
  
  
 +
  \operatorname{I}(X;Y) &\le \Eta(X),\,
  
 +
操作者名{ i }(x; y) & le Eta (x) ,,
  
 
===Conditional entropy of independent random variables===
 
===Conditional entropy of independent random variables===
  
===Conditional entropy of independent random variables===
+
\end{align}</math>
  
独立随机变量的条件熵
+
结束{ align } </math >
  
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are independent random variables.
 
 
相反,math  Eta (y | x) Eta (y) / math 当且仅当 math y / math 和 math x / math 是独立随机变量。
 
  
  
  
 +
where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
  
 +
其中,“数学”和“数学”之间的相互信息。
  
 
===Chain rule===
 
===Chain rule===
 
===Chain rule===
 
 
链式规则
 
  
 
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
 
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
  
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has joint entropy <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the chain rule of conditional entropy:
+
For independent <math>X</math> and <math>Y</math>:
 
 
假设由两个随机变量数学 x / math 和数学 y / math 组成的组合系统具有联合熵数学 Eta (x,y) / math,也就是说,我们平均需要 math  Eta (x,y) / math 位信息来描述它的精确状态。现在,如果我们首先学习数学 x / math 的值,我们就得到了数学 Eta (x) / 数学信息位。一旦知道了数学 x / math,我们只需要 math  Eta (x,y)- Eta (x) / math 位来描述整个系统的状态。这个量正是 math  Eta (y | x) / math,它给出了条件熵的链式法则:
 
 
 
  
 +
对于独立的《数学》和《数学》 :
  
  
第347行: 第285行:
 
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
 
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
  
<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math>
+
<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
 
Math  Eta (y | x) Eta (x,y)- Eta (x) . / math
 
 
 
  
 +
Eta (y | x) = Eta (y) </math > and < math > Eta (x | y) = Eta (x) ,</math >
  
  
第357行: 第293行:
 
The chain rule follows from the above definition of conditional entropy:
 
The chain rule follows from the above definition of conditional entropy:
  
The chain rule follows from the above definition of conditional entropy:
+
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
 
链式规则遵循以上条件熵的定义:
 
 
 
  
 +
虽然对于给定的随机变量来说,特定条件熵的 Eta (x | y = y) </math > </math > 可能比 </math > Eta (x) </math > </math > ,< math > Eta (x | y) </math > 不能超过 math > Eta (x) </math > 。
  
  
  
 
:<math>\begin{align}  
 
:<math>\begin{align}  
 
<math>\begin{align}
 
 
数学 begin { align }
 
  
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
  
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
+
&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
  
Eta (y | x) & sum (x,y) p (x,y) log 左(frac (x)} p (x,y)右)[4 pt ]
+
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
  
&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
+
上面的定义适用于离散随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。设 x 是连续随机变量,f (x,y)是连续随机概率密度函数。微分条件熵 < math > h (x | y) </math > 被定义为
  
 
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
数学 x,y 中数学 y } p (x,y) log (p (x,y)) + 数学 x,y 中数学 y } p (x,y) log (p (x))[4 pt ]
 
  
 
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
 
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
  
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
+
{{Equation box 1
  
& Eta (x,y) + sum { x } p (x) log (p (x))[4 pt ]
+
{方程式方框1
  
 
  & = \Eta(X,Y) - \Eta(X).  
 
  & = \Eta(X,Y) - \Eta(X).  
  
& = \Eta(X,Y) - \Eta(X).
+
|indent =
  
&  Eta (x,y)- Eta (x).
+
2012年10月22日
  
 
\end{align}</math>
 
\end{align}</math>
  
\end{align}</math>
+
|title=
  
End { align } / math
+
2012年10月11日
  
  
  
 +
|equation = }}
  
 +
| equation = }
  
 
In general, a chain rule for multiple random variables holds:
 
In general, a chain rule for multiple random variables holds:
  
In general, a chain rule for multiple random variables holds:
+
|cellpadding= 6
  
一般来说,多个随机变量的链式规则适用于:
+
6
  
  
  
 +
|border
  
 +
边界
  
 
:<math> \Eta(X_1,X_2,\ldots,X_n) =
 
:<math> \Eta(X_1,X_2,\ldots,X_n) =
  
<math> \Eta(X_1,X_2,\ldots,X_n) =
+
|border colour = #0073CF
  
Math  Eta (x1,x2, ldots,xn)
+
0073CF
  
 
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
 
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
  
\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
+
|background colour=#F5FFFA}}
 
 
{ i } ^ n  Eta (xi | x1,ldots,x { i-1}) / math
 
 
 
  
 +
5/fffa }}
  
  
第433行: 第363行:
 
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
 
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
  
It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
 
  
它有一个类似的形式链规则在概率论,除了加法代替乘法是使用。
 
  
 +
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
  
 
+
与离散随机变量的条件熵相反,条件微分熵可能是负的。
 
 
 
 
===Bayes' rule===
 
  
 
===Bayes' rule===
 
===Bayes' rule===
 
贝叶斯规则
 
  
 
[[Bayes' rule]] for conditional entropy states
 
[[Bayes' rule]] for conditional entropy states
  
Bayes' rule for conditional entropy states
+
As in the discrete case there is a chain rule for differential entropy:
  
条件熵的贝叶斯规则
+
在离散情况下,微分熵有一个链式规则:
  
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
  
<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
+
<math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
  
Math  Eta (y | x) , Eta (x | y)- Eta (x) +  Eta (y) . / math
+
H (y | x) ,= ,h (x,y)-h (x)
  
  
  
 +
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
  
 +
然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
  
 
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
 
证据。Math  Eta (y | x) Eta (x,y)- Eta (x) / math  Eta (x | y) Eta (y,x)- Eta (y) / math.对称性需要数学 Eta (x,y) Eta (y,x) / 数学。减去这两个方程就得到了贝叶斯定律。
 
  
  
  
 +
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
  
 +
联合微分熵也用于连续随机变量之间互信息的定义:
  
 
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
 
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
  
If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
+
<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
 
 
如果数学 y / 数学是条件独立于数学 z / 数学给定的数学 x / 数学,我们有:
 
 
 
  
 +
(x,y) = h (x)-h (x | y) = h (y)-h (y | x) </math >
  
  
第485行: 第407行:
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
  
<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
+
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
  
Math  Eta (y | x,z) , Eta (y | x) . / math
+
当且仅当 < math > x </math > 和 < math > y </math > 是独立的。
  
  
 
 
 
===Other properties===
 
  
 
===Other properties===
 
===Other properties===
 
其他物业
 
  
 
For any <math>X</math> and <math>Y</math>:
 
For any <math>X</math> and <math>Y</math>:
  
For any <math>X</math> and <math>Y</math>:
+
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
  
对于任何数学 x / 数学 y / 数学:
+
条件微分熵对估计量的期望平方误差产生一个下限。对于任何一个随机变量,观察值 < math > y </math > 和估计值 < math > widedhat { x } </math > ,下面是:
  
 
:<math display="block">\begin{align}
 
:<math display="block">\begin{align}
  
<math display="block">\begin{align}
+
<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
  
数学显示“ block” begin { align }
+
< math display = " block" > mathbb { e } left [ bigl (x-widehat { x }{(y)} bigr) ^ 2 right ]
  
 
   \Eta(Y|X) &\le \Eta(Y) \, \\
 
   \Eta(Y|X) &\le \Eta(Y) \, \\
  
  \Eta(Y|X) &\le \Eta(Y) \, \\
+
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
  
三、 Eta (y | x)和 le Eta (y) ,
+
1}{2 pi e } e ^ {2 h (x | y)} </math >
  
 
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
  \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
 
(x,y) &  Eta (x | y) +  Eta (y | x) +  operatorname { i }(x; y) ,
 
  
 
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
 
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
  
  \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
+
This is related to the uncertainty principle from quantum mechanics.
  
Eta (x,y) & Eta (x) + Eta (y)-操作者名称{ i }(x; y) , ,
+
这与量子力学的不确定性原理有关。
 
 
  \operatorname{I}(X;Y) &\le \Eta(X),\,
 
  
 
   \operatorname{I}(X;Y) &\le \Eta(X),\,
 
   \operatorname{I}(X;Y) &\le \Eta(X),\,
 
{ i }(x; y) & le Eta (x) , ,
 
 
\end{align}</math>
 
  
 
\end{align}</math>
 
\end{align}</math>
 
End { align } / math
 
  
  
  
 +
In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
  
 +
在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
  
 
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
 
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
 
where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
 
 
其中 math  operatorname { i }(x; y) / math 是 math x / math 和 math y / math 之间的相互信息。
 
 
 
 
  
  
For independent <math>X</math> and <math>Y</math>:
 
  
 
For independent <math>X</math> and <math>Y</math>:
 
For independent <math>X</math> and <math>Y</math>:
 
对于独立数学 x / 数学 y / 数学:
 
 
 
  
  
  
 
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
 
Math  Eta (y | x) Eta (y) / math  Eta (x | y) Eta (x) ,/ math
 
 
 
  
  
第577行: 第465行:
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
  
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
  
虽然对于给定的随机变量 y / 数学 y / 数学,特定条件熵数学 Eta (x | y) / 数学可以比 math  Eta (x) / 数学更小或更大,math  Eta (x | y) / 数学永远不能超过 math  Eta (x) / 数学。
 
 
 
 
 
 
== Conditional differential entropy ==
 
  
 
== Conditional differential entropy ==
 
== Conditional differential entropy ==
 
条件微分熵
 
  
 
=== Definition ===
 
=== Definition ===
 
=== Definition ===
 
 
定义
 
  
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
 
 
上述定义适用于离散型随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。让数学 x / math 和数学 y / math 是一个连续的随机变量和一个概率密度函数 / 数学 f (x,y) / math。微分 / 条件熵数学 h (x | y) / math 定义为
 
 
 
  
  
  
 
{{Equation box 1
 
{{Equation box 1
 
{{Equation box 1
 
 
{方程式方框1
 
 
|indent =
 
 
|indent =
 
 
不会有事的
 
 
|title=
 
 
|title=
 
 
标题
 
 
|equation = {{NumBlk||<math>h(X|Y) = -\int_{\mathcal X, \mathcal Y} f(x,y)\log f(x|y)\,dx dy</math>|{{EquationRef|Eq.2}}}}
 
 
|equation = }}
 
 
会公式开始
 
 
|cellpadding= 6
 
 
|cellpadding= 6
 
 
6号手术室
 
 
|border
 
 
|border
 
 
边界
 
 
|border colour = #0073CF
 
 
|border colour = #0073CF
 
 
0073CF
 
 
|background colour=#F5FFFA}}
 
 
|background colour=#F5FFFA}}
 
 
5 / fffa }
 
 
 
 
 
 
=== Properties ===
 
 
=== Properties ===
 
 
属性
 
 
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
 
 
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
 
 
与离散随机变量的条件熵相反,条件微分熵可能是负的。
 
 
 
 
 
 
As in the discrete case there is a chain rule for differential entropy:
 
 
As in the discrete case there is a chain rule for differential entropy:
 
 
在离散情况下,微分熵有一个链式规则:
 
 
:<math>h(Y|X)\,=\,h(X,Y)-h(X)</math><ref name=cover1991 />{{rp|253}}
 
 
<math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
 
 
数学 h (y | x) ,h (x,y)-h (x) / math
 
 
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
 
 
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
 
 
然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
 
 
 
 
 
 
Joint differential entropy is also used in the definition of the [[mutual information]] between continuous random variables:
 
 
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
 
 
联合微分熵也用于连续随机变量之间互信息的定义:
 
 
:<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
 
 
<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
 
 
{ i }(x,y) h (x)-h (x | y) h (y)-h (y | x) / math
 
 
 
 
 
 
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.<ref name=cover1991 />{{rp|253}}
 
 
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
 
 
数学 h (x | y) le h (x) / math with equality 当且仅当数学 x / math 和数学 y / math 是独立的。
 
 
 
 
 
 
===Relation to estimator error===
 
 
===Relation to estimator error===
 
 
与估计误差的关系
 
 
The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}}
 
 
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
 
 
条件微分熵对估计量的期望平方误差产生一个下限。对于任何随机变量的数学 x / math,观察数学 y / math 和估计数学 x / math,下面的观点成立:
 
 
:<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
 
 
<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
 
 
数学显示块“左”[ bigl (x-widehat {(y)} bigr) ^ 2]
 
 
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
 
 
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
 
 
(x | y)} / math
 
 
 
 
 
 
This is related to the [[uncertainty principle]] from [[quantum mechanics]].
 
 
This is related to the uncertainty principle from quantum mechanics.
 
 
这与量子力学的不确定性原理有关。
 
 
 
 
 
 
==Generalization to quantum theory==
 
 
==Generalization to quantum theory==
 
 
对量子理论的推广
 
 
In [[quantum information theory]], the conditional entropy is generalized to the [[conditional quantum entropy]]. The latter can take negative values, unlike its classical counterpart.
 
 
In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
 
 
在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
 
 
 
 
 
 
== See also ==
 
 
== See also ==
 
 
参见
 
 
* [[Entropy (information theory)]]
 
 
 
 
* [[Mutual information]]
 
 
 
 
* [[Conditional quantum entropy]]
 
 
 
 
* [[Variation of information]]
 
 
 
 
* [[Entropy power inequality]]
 
 
 
 
* [[Likelihood function]]
 
 
 
 
 
 
 
 
==References==
 
 
==References==
 
 
参考资料
 
 
{{Reflist}}
 
 
 
 
 
 
 
 
[[Category:Entropy and information]]
 
  
 
Category:Entropy and information
 
Category:Entropy and information
第831行: 第481行:
 
类别: 熵和信息
 
类别: 熵和信息
  
[[Category:Information theory]]
+
|indent =
  
 
Category:Information theory
 
Category:Information theory

2020年10月25日 (日) 16:07的版本

此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。

模板:Information theory


Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]. The area contained by both circles is the joint entropy [math]\displaystyle{ \Eta(X,Y) }[/math]. The circle on the left (red and violet) is the individual entropy [math]\displaystyle{ \Eta(X) }[/math], with the red being the conditional entropy [math]\displaystyle{ \Eta(X|Y) }[/math]. The circle on the right (blue and violet) is [math]\displaystyle{ \Eta(Y) }[/math], with the blue being [math]\displaystyle{ \Eta(Y|X) }[/math]. The violet is the mutual information [math]\displaystyle{ \operatorname{I}(X;Y) }[/math].

[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]. The area contained by both circles is the joint entropy [math]\displaystyle{ \Eta(X,Y) }[/math]. The circle on the left (red and violet) is the individual entropy [math]\displaystyle{ \Eta(X) }[/math], with the red being the conditional entropy [math]\displaystyle{ \Eta(X|Y) }[/math]. The circle on the right (blue and violet) is [math]\displaystyle{ \Eta(Y) }[/math], with the blue being [math]\displaystyle{ \Eta(Y|X) }[/math]. The violet is the mutual information [math]\displaystyle{ \operatorname{I}(X;Y) }[/math].]]

文恩图显示了相加和相减的关系,各种信息测量与相关变量相关。两个圆圈所包含的区域是联合熵。左边的圆圈(红色和紫色)代表个体熵。左边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体。右边的圆圈(蓝色和紫色)是 < math > Eta (y) </math > ,蓝色的是 < math > Eta (y | x) </math > 。紫色是共同的信息[ math > 操作者名称{ i }(x; y) </math > ]


In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable [math]\displaystyle{ Y }[/math] given that the value of another random variable [math]\displaystyle{ X }[/math] is known. Here, information is measured in shannons, nats, or hartleys. The entropy of [math]\displaystyle{ Y }[/math] conditioned on [math]\displaystyle{ X }[/math] is written as [math]\displaystyle{ \Eta(Y|X) }[/math].

In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable [math]\displaystyle{ Y }[/math] given that the value of another random variable [math]\displaystyle{ X }[/math] is known. Here, information is measured in shannons, nats, or hartleys. The entropy of [math]\displaystyle{ Y }[/math] conditioned on [math]\displaystyle{ X }[/math] is written as [math]\displaystyle{ \Eta(Y|X) }[/math].

在信息论中,如果另一个随机变量的值是已知的,那么条件熵就会量化描述一个随机变量的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。“数学”的熵取决于“数学” ,“ x”表示“数学” ,“埃塔”表示“数学”。


Definition

The conditional entropy of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math] is defined as

The conditional entropy of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math] is defined as

给定的 x 条件熵被定义为


{{Equation box 1

{{Equation box 1

{方程式方框1

|indent =

|indent =

2012年10月22日

|title=

|title=

2012年10月11日

|equation =

[math]\displaystyle{ \Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)} }[/math]

 

 

 

 

(Eq.1)

|equation = }}

| equation = }

|cellpadding= 6

|cellpadding= 6

6

|border

|border

边界

|border colour = #0073CF

|border colour = #0073CF

0073CF

|background colour=#F5FFFA}}

|background colour=#F5FFFA}}

5/fffa }}


where [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ \mathcal Y }[/math] denote the support sets of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].

where [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ \mathcal Y }[/math] denote the support sets of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].

这里 < math > 数学 x </math > 和 < math > > 数学 y </math > 表示 < math > x </math > 和 < math > y </math > 的支持集。


Note: It is conventioned that the expressions [math]\displaystyle{ 0 \log 0 }[/math] and [math]\displaystyle{ 0 \log c/0 }[/math] for fixed [math]\displaystyle{ c \gt 0 }[/math] should be treated as being equal to zero. This is because [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0 }[/math] and [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \theta = 0 }[/math][1]

Note: It is conventioned that the expressions [math]\displaystyle{ 0 \log 0 }[/math] and [math]\displaystyle{ 0 \log c/0 }[/math] for fixed [math]\displaystyle{ c \gt 0 }[/math] should be treated as being equal to zero. This is because [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0 }[/math] and [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \theta = 0 }[/math]

注意: 常规的表达式 < math > 0 log 0 </math > 和 < math > 0 log c/0 </math > 对于 fixed < math > c > 0 </math > 应该被视为等于零。这是因为 < math > lim { theta to0 ^ + } theta,log,c/theta = 0 </math > 和 < math > lim { theta to0 ^ + } theta,log theta = 0 </math >


Intuitive explanation of the definition :

The chain rule follows from the above definition of conditional entropy:

链式规则遵循了上述条件熵的定义:

According to the definition, [math]\displaystyle{ \displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ ) }[/math] where [math]\displaystyle{ \displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) . }[/math] [math]\displaystyle{ \displaystyle f }[/math] associates to [math]\displaystyle{ \displaystyle ( x,y) }[/math] the information content of [math]\displaystyle{ \displaystyle ( Y=y) }[/math] given [math]\displaystyle{ \displaystyle (X=x) }[/math], which is the amount of information needed to describe the event [math]\displaystyle{ \displaystyle (Y=y) }[/math] given [math]\displaystyle{ (X=x) }[/math]. According to the law of large numbers, [math]\displaystyle{ \displaystyle H(Y|X) }[/math] is the arithmetic mean of a large number of independent realizations of [math]\displaystyle{ \displaystyle f(X,Y) }[/math].


[math]\displaystyle{ \begin{align} 1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3 == Motivation == \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt] Eta (y | x) & = sum _ { x in mathcal x,y in mathcal y } p (x,y) log left (frac { p (x)}{ p (x,y)} right)[4 pt ] Let \lt math\gt \Eta(Y|X=x) }[/math] be the entropy of the discrete random variable [math]\displaystyle{ Y }[/math] conditioned on the discrete random variable [math]\displaystyle{ X }[/math] taking a certain value [math]\displaystyle{ x }[/math]. Denote the support sets of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] by [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ \mathcal Y }[/math]. Let [math]\displaystyle{ Y }[/math] have probability mass function [math]\displaystyle{ p_Y{(y)} }[/math]. The unconditional entropy of [math]\displaystyle{ Y }[/math] is calculated as [math]\displaystyle{ \Eta(Y) := \mathbb{E}[\operatorname{I}(Y)] }[/math], i.e.

&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]

& = sum _ { x in mathcal x,y in mathcal y } p (x,y)(log (p (x))-log (p (x,y)))[4 pt ]


&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]

& =-sum _ { x in mathcal x,y in mathcal y } p (x,y) log (p (x,y)) + sum _ { x in mathcal x,y in mathcal y }{ p (x,y) log (p (x))}[4 pt ]

[math]\displaystyle{ \Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)} & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt] & = Eta (x,y) + sum _ { x in mathcal x } p (x) log (p (x))[4 pt ] = -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}}, }[/math]
& = \Eta(X,Y) - \Eta(X). 

& = Eta (x,y)-Eta (x).


\end{align}</math>

结束{ align } </math >

where [math]\displaystyle{ \operatorname{I}(y_i) }[/math] is the information content of the outcome of [math]\displaystyle{ Y }[/math] taking the value [math]\displaystyle{ y_i }[/math]. The entropy of [math]\displaystyle{ Y }[/math] conditioned on [math]\displaystyle{ X }[/math] taking the value [math]\displaystyle{ x }[/math] is defined analogously by conditional expectation:


In general, a chain rule for multiple random variables holds:

一般来说,多个随机变量的链式规则适用于:

[math]\displaystyle{ \Eta(Y|X=x) = -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. }[/math]

[math]\displaystyle{ \Eta(X_1,X_2,\ldots,X_n) = \lt math \gt Eta (x1,x2,ldots,xn) = Note that \lt math\gt \Eta(Y|X) }[/math] is the result of averaging [math]\displaystyle{ \Eta(Y|X=x) }[/math] over all possible values [math]\displaystyle{ x }[/math] that [math]\displaystyle{ X }[/math] may take. Also, if the above sum is taken over a sample [math]\displaystyle{ y_1, \dots, y_n }[/math], the expected value [math]\displaystyle{ E_X[ \Eta(y_1, \dots, y_n \mid X = x)] }[/math] is known in some domains as equivocation.[2]

\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>

Sum { i = 1} ^ n Eta (x _ i | x _ 1,ldots,x _ { i-1}) </math >


Given discrete random variables [math]\displaystyle{ X }[/math] with image [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ Y }[/math] with image [math]\displaystyle{ \mathcal Y }[/math], the conditional entropy of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math] is defined as the weighted sum of [math]\displaystyle{ \Eta(Y|X=x) }[/math] for each possible value of [math]\displaystyle{ x }[/math], using [math]\displaystyle{ p(x) }[/math] as the weights:[3]:15

It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.

除了用加法代替乘法之外,它的形式与概率论的链式法则相似。


[math]\displaystyle{ \begin{align} Bayes' rule for conditional entropy states 条件熵的贝叶斯规则 \Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\ \lt math\gt \Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y). }[/math]

[数学] Eta (y | x) ,= ,Eta (x | y)-Eta (x) + Eta (y)

& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\

& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\

Proof. [math]\displaystyle{ \Eta(Y|X) = \Eta(X,Y) - \Eta(X) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(Y,X) - \Eta(Y) }[/math]. Symmetry entails [math]\displaystyle{ \Eta(X,Y) = \Eta(Y,X) }[/math]. Subtracting the two equations implies Bayes' rule.

证据。Eta (y | x) = Eta (x,y)-Eta (x) | math > Eta (x | y) = Eta (y,x)-Eta (y).对称意味着 Eta (x,y) = Eta (y,x)。减去这两个方程就得到了贝叶斯定律。

& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\

& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\

If [math]\displaystyle{ Y }[/math] is conditionally independent of [math]\displaystyle{ Z }[/math] given [math]\displaystyle{ X }[/math] we have:

如果[数学] y </math > 是条件独立于[数学] z </math > 给定 < 数学 > x </math > 我们有:

& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\

\end{align}

[math]\displaystyle{ \Eta(Y|X,Z) \,=\, \Eta(Y|X). }[/math]

[ math ] Eta (y | x,z) ,= ,Eta (y | x)

</math>



For any [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:

对于任意的 < math > x </math > 和 < math > > y </math > :


[math]\displaystyle{ \begin{align} (数学显示 = “ block” \gt begin { align }) ==Properties== \Eta(Y|X) &\le \Eta(Y) \, \\ 埃塔(y | x)及埃塔(y) , ===Conditional entropy equals zero=== \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\ eta (x,y) & = Eta (x | y) + Eta (y | x) + 操作数名{ i }(x; y) ,qquad \lt math\gt \Eta(Y|X)=0 }[/math] if and only if the value of [math]\displaystyle{ Y }[/math] is completely determined by the value of [math]\displaystyle{ X }[/math].

 \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\

Eta (x,y) & = Eta (x) + Eta (y)-操作员名称{ i }(x; y) ,,


 \operatorname{I}(X;Y) &\le \Eta(X),\,

操作者名{ i }(x; y) & le Eta (x) ,,

Conditional entropy of independent random variables

\end{align}</math>

结束{ align } </math >

Conversely, [math]\displaystyle{ \Eta(Y|X) = \Eta(Y) }[/math] if and only if [math]\displaystyle{ Y }[/math] and [math]\displaystyle{ X }[/math] are independent random variables.


where [math]\displaystyle{ \operatorname{I}(X;Y) }[/math] is the mutual information between [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].

其中,“数学”和“数学”之间的相互信息。

Chain rule

Assume that the combined system determined by two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] has joint entropy [math]\displaystyle{ \Eta(X,Y) }[/math], that is, we need [math]\displaystyle{ \Eta(X,Y) }[/math] bits of information on average to describe its exact state. Now if we first learn the value of [math]\displaystyle{ X }[/math], we have gained [math]\displaystyle{ \Eta(X) }[/math] bits of information. Once [math]\displaystyle{ X }[/math] is known, we only need [math]\displaystyle{ \Eta(X,Y)-\Eta(X) }[/math] bits to describe the state of the whole system. This quantity is exactly [math]\displaystyle{ \Eta(Y|X) }[/math], which gives the chain rule of conditional entropy:

For independent [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:

对于独立的《数学》和《数学》 :


[math]\displaystyle{ \Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X). }[/math][3]:17

[math]\displaystyle{ \Eta(Y|X) = \Eta(Y) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(X) \, }[/math]

Eta (y | x) = Eta (y) </math > and < math > Eta (x | y) = Eta (x) ,</math >


The chain rule follows from the above definition of conditional entropy:

Although the specific-conditional entropy [math]\displaystyle{ \Eta(X|Y=y) }[/math] can be either less or greater than [math]\displaystyle{ \Eta(X) }[/math] for a given random variate [math]\displaystyle{ y }[/math] of [math]\displaystyle{ Y }[/math], [math]\displaystyle{ \Eta(X|Y) }[/math] can never exceed [math]\displaystyle{ \Eta(X) }[/math].

虽然对于给定的随机变量来说,特定条件熵的 Eta (x | y = y) </math > </math > 可能比 </math > Eta (x) </math > </math > ,< math > Eta (x | y) </math > 不能超过 math > Eta (x) </math > 。


[math]\displaystyle{ \begin{align} \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt] &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt] The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let \lt math\gt X }[/math] and [math]\displaystyle{ Y }[/math] be a continuous random variables with a joint probability density function [math]\displaystyle{ f(x,y) }[/math]. The differential conditional entropy [math]\displaystyle{ h(X|Y) }[/math] is defined as

上面的定义适用于离散随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。设 x 是连续随机变量,f (x,y)是连续随机概率密度函数。微分条件熵 < math > h (x | y) </math > 被定义为

&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]

{{Equation box 1

{方程式方框1

& = \Eta(X,Y) - \Eta(X). 

|indent =

2012年10月22日

\end{align}</math>

|title=

2012年10月11日


|equation = }}

| equation = }

In general, a chain rule for multiple random variables holds:

|cellpadding= 6

6


|border

边界

[math]\displaystyle{ \Eta(X_1,X_2,\ldots,X_n) = |border colour = #0073CF 0073CF \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) }[/math][3]:22

|background colour=#F5FFFA}}

5/fffa }}


It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.


In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.

与离散随机变量的条件熵相反,条件微分熵可能是负的。

Bayes' rule

Bayes' rule for conditional entropy states

As in the discrete case there is a chain rule for differential entropy:

在离散情况下,微分熵有一个链式规则:

[math]\displaystyle{ \Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y). }[/math]

[math]\displaystyle{ h(Y|X)\,=\,h(X,Y)-h(X) }[/math]

H (y | x) ,= ,h (x,y)-h (x)


Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.

然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。

Proof. [math]\displaystyle{ \Eta(Y|X) = \Eta(X,Y) - \Eta(X) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(Y,X) - \Eta(Y) }[/math]. Symmetry entails [math]\displaystyle{ \Eta(X,Y) = \Eta(Y,X) }[/math]. Subtracting the two equations implies Bayes' rule.


Joint differential entropy is also used in the definition of the mutual information between continuous random variables:

联合微分熵也用于连续随机变量之间互信息的定义:

If [math]\displaystyle{ Y }[/math] is conditionally independent of [math]\displaystyle{ Z }[/math] given [math]\displaystyle{ X }[/math] we have:

[math]\displaystyle{ \operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X) }[/math]

(x,y) = h (x)-h (x | y) = h (y)-h (y | x) </math >


[math]\displaystyle{ \Eta(Y|X,Z) \,=\, \Eta(Y|X). }[/math]

[math]\displaystyle{ h(X|Y) \le h(X) }[/math] with equality if and only if [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are independent.

当且仅当 < math > x </math > 和 < math > y </math > 是独立的。


Other properties

For any [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:

The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable [math]\displaystyle{ X }[/math], observation [math]\displaystyle{ Y }[/math] and estimator [math]\displaystyle{ \widehat{X} }[/math] the following holds:

条件微分熵对估计量的期望平方误差产生一个下限。对于任何一个随机变量,观察值 < math > y </math > 和估计值 < math > widedhat { x } </math > ,下面是:

[math]\displaystyle{ \begin{align} \lt math display="block"\gt \mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right] \lt math display = " block" \gt mathbb { e } left [ bigl (x-widehat { x }{(y)} bigr) ^ 2 right ] \Eta(Y|X) &\le \Eta(Y) \, \\ \ge \frac{1}{2\pi e}e^{2h(X|Y)} }[/math]

1}{2 pi e } e ^ {2 h (x | y)} </math >

 \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\

This is related to the uncertainty principle from quantum mechanics.

这与量子力学的不确定性原理有关。

 \operatorname{I}(X;Y) &\le \Eta(X),\,

\end{align}</math>


In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.

在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。

where [math]\displaystyle{ \operatorname{I}(X;Y) }[/math] is the mutual information between [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].


For independent [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:


[math]\displaystyle{ \Eta(Y|X) = \Eta(Y) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(X) \, }[/math]


Although the specific-conditional entropy [math]\displaystyle{ \Eta(X|Y=y) }[/math] can be either less or greater than [math]\displaystyle{ \Eta(X) }[/math] for a given random variate [math]\displaystyle{ y }[/math] of [math]\displaystyle{ Y }[/math], [math]\displaystyle{ \Eta(X|Y) }[/math] can never exceed [math]\displaystyle{ \Eta(X) }[/math].


Conditional differential entropy

Definition

The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be a continuous random variables with a joint probability density function [math]\displaystyle{ f(x,y) }[/math]. The differential conditional entropy [math]\displaystyle{ h(X|Y) }[/math] is defined as[3]:249


{{Equation box 1

Category:Entropy and information

类别: 熵和信息

|indent =

Category:Information theory

范畴: 信息论


This page was moved from wikipedia:en:Conditional entropy. Its edit history can be viewed at 条件熵/edithistory

  1. "David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book". www.inference.org.uk. Retrieved 2019-10-25.
  2. Hellman, M.; Raviv, J. (1970). "Probability of error, equivocation, and the Chernoff bound". IEEE Transactions on Information Theory. 16 (4): 368–372.
  3. 3.0 3.1 3.2 3.3 T. Cover; J. Thomas (1991). Elements of Information Theory. ISBN 0-471-06259-6. https://archive.org/details/elementsofinform0000cove.