“条件熵”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
(Moved page from wikipedia:en:Conditional entropy (history))
Jie讨论 | 贡献
第2行: 第2行:
  
 
{{Short description|Measure of relative information in probability theory}}
 
{{Short description|Measure of relative information in probability theory}}
 
 
{{Information theory}}
 
{{Information theory}}
 
 
  
 
[[Image:Entropy-mutual-information-relative-entropy-relation-diagram.svg|thumb|256px|right|[[Venn diagram]] showing additive and subtractive relationships various [[Quantities of information|information measures]] associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the [[joint entropy]] <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the [[Entropy (information theory)|individual entropy]] <math>\Eta(X)</math>, with the red being the [[conditional entropy]] <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the [[mutual information]] <math>\operatorname{I}(X;Y)</math>.]]
 
[[Image:Entropy-mutual-information-relative-entropy-relation-diagram.svg|thumb|256px|right|[[Venn diagram]] showing additive and subtractive relationships various [[Quantities of information|information measures]] associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the [[joint entropy]] <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the [[Entropy (information theory)|individual entropy]] <math>\Eta(X)</math>, with the red being the [[conditional entropy]] <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the [[mutual information]] <math>\operatorname{I}(X;Y)</math>.]]
 
[[Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables <math>X</math> and <math>Y</math>. The area contained by both circles is the joint entropy <math>\Eta(X,Y)</math>. The circle on the left (red and violet) is the individual entropy <math>\Eta(X)</math>, with the red being the conditional entropy <math>\Eta(X|Y)</math>. The circle on the right (blue and violet) is <math>\Eta(Y)</math>, with the blue being <math>\Eta(Y|X)</math>. The violet is the mutual information <math>\operatorname{I}(X;Y)</math>.]]
 
 
文恩图显示了相加和相减的关系,各种信息测量与相关变量相关。两个圆圈所包含的区域是联合熵。左边的圆圈(红色和紫色)代表个体熵。左边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体熵。右边的圆圈代表个体。右边的圆圈(蓝色和紫色)是 < math > Eta (y) </math > ,蓝色的是 < math > Eta (y | x) </math > 。紫色是共同的信息[ math > 操作者名称{ i }(x; y) </math > ]
 
 
 
  
 
In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
 
In [[information theory]], the '''conditional entropy''' quantifies the amount of information needed to describe the outcome of a [[random variable]] <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in [[Shannon (unit)|shannon]]s, [[Nat (unit)|nat]]s, or [[Hartley (unit)|hartley]]s. The ''entropy of <math>Y</math> conditioned on <math>X</math>'' is written as <math>\Eta(Y|X)</math>.
 
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable <math>Y</math> given that the value of another random variable <math>X</math> is known. Here, information is measured in shannons, nats, or hartleys. The entropy of <math>Y</math> conditioned on <math>X</math> is written as <math>\Eta(Y|X)</math>.
 
 
在信息论中,如果另一个随机变量的值是已知的,那么条件熵就会量化描述一个随机变量的结果所需的信息量。在这里,信息是用夏农、纳特斯或哈特利来衡量的。“数学”的熵取决于“数学” ,“ x”表示“数学” ,“埃塔”表示“数学”。
 
 
 
  
 
== Definition ==
 
== Definition ==
 
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
The conditional entropy of <math>Y</math> given <math>X</math> is defined as
 
 
给定的 x 条件熵被定义为
 
 
 
 
{{Equation box 1
 
  
 
{{Equation box 1
 
{{Equation box 1
 
{方程式方框1
 
 
 
|indent =
 
|indent =
 
|indent =
 
 
2012年10月22日
 
 
|title=
 
 
 
|title=
 
|title=
 
2012年10月11日
 
 
 
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
 
|equation = {{NumBlk||<math>\Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}</math>|{{EquationRef|Eq.1}}}}
 
|equation = }}
 
 
| equation = }
 
 
 
|cellpadding= 6
 
|cellpadding= 6
 
|cellpadding= 6
 
 
6
 
 
 
|border
 
|border
 
|border
 
 
边界
 
 
 
|border colour = #0073CF
 
|border colour = #0073CF
 
|border colour = #0073CF
 
 
0073CF
 
 
|background colour=#F5FFFA}}
 
 
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 
5/fffa }}
 
 
 
  
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the [[Support (mathematics)|support sets]] of <math>X</math> and <math>Y</math>.
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the [[Support (mathematics)|support sets]] of <math>X</math> and <math>Y</math>.
 
where <math>\mathcal X</math> and <math>\mathcal Y</math> denote the support sets of <math>X</math> and <math>Y</math>.
 
 
这里 < math > 数学 x </math > 和 < math > > 数学 y </math > 表示 < math > x </math > 和 < math > y </math > 的支持集。
 
 
 
  
 
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
 
''Note:'' It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math><ref>{{Cite web|url=http://www.inference.org.uk/mackay/itprnn/book.html|title=David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book|website=www.inference.org.uk|access-date=2019-10-25}}</ref> <!-- because p(x,y) could still equal 0 even if p(x) != 0 and p(y) != 0. What about p(x,y)=p(x)=0? -->
 
Note: It is conventioned that the expressions <math>0 \log 0</math> and <math>0 \log c/0</math> for fixed <math>c > 0</math> should be treated as being equal to zero. This is because <math>\lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0</math> and <math>\lim_{\theta\to0^+} \theta\, \log \theta = 0</math>
 
 
注意: 常规的表达式 < math > 0 log 0 </math > 和 < math > 0 log c/0 </math > 对于 fixed < math > c > 0 </math > 应该被视为等于零。这是因为 < math > lim { theta to0 ^ + } theta,log,c/theta = 0 </math > 和 < math > lim { theta to0 ^ + } theta,log theta = 0 </math >
 
 
 
  
 
Intuitive explanation of the definition :  
 
Intuitive explanation of the definition :  
 
The chain rule follows from the above definition of conditional entropy:
 
 
链式规则遵循了上述条件熵的定义:
 
 
 
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
 
According to the definition, <math>\displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ )</math> where <math>\displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) .</math> <math>\displaystyle f</math> associates to  <math>\displaystyle ( x,y)</math> the information content of <math>\displaystyle ( Y=y)</math> given <math>\displaystyle (X=x)</math>, which is the amount of information needed to describe the event <math>\displaystyle (Y=y)</math> given <math>(X=x)</math>.  According to the law of large numbers, <math>\displaystyle H(Y|X)</math> is the arithmetic mean of a large number of independent realizations of <math>\displaystyle f(X,Y)</math>.
 
 
 
<math>\begin{align}
 
 
1.1.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3.3.3.4.3.3.3.3.3.3.3.3.3
 
  
 
== Motivation ==
 
== Motivation ==
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
 
 
Eta (y | x) & = sum _ { x in mathcal x,y in mathcal y } p (x,y) log left (frac { p (x)}{ p (x,y)} right)[4 pt ]
 
 
 
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
 
Let <math>\Eta(Y|X=x)</math> be the [[Shannon Entropy|entropy]] of the discrete random variable <math>Y</math> conditioned on the discrete random variable <math>X</math> taking a certain value <math>x</math>. Denote the support sets of <math>X</math> and <math>Y</math> by <math>\mathcal X</math> and <math>\mathcal Y</math>. Let <math>Y</math> have [[probability mass function]] <math>p_Y{(y)}</math>. The unconditional entropy of <math>Y</math> is calculated as <math>\Eta(Y) := \mathbb{E}[\operatorname{I}(Y)]</math>, i.e.
 
&= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
 
 
& = sum _ { x in mathcal x,y in mathcal y } p (x,y)(log (p (x))-log (p (x,y)))[4 pt ]
 
 
 
 
&= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
 
& =-sum _ { x in mathcal x,y in mathcal y } p (x,y) log (p (x,y)) + sum _ { x in mathcal x,y in mathcal y }{ p (x,y) log (p (x))}[4 pt ]
 
  
 
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
 
:<math>\Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)}  
 
& = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
 
 
& = Eta (x,y) + sum _ { x in mathcal x } p (x) log (p (x))[4 pt ]
 
 
 
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
 
= -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}},</math>
 
& = \Eta(X,Y) - \Eta(X).
 
 
& = Eta (x,y)-Eta (x).
 
 
 
 
\end{align}</math>
 
 
结束{ align } </math >
 
  
 
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
 
where <math>\operatorname{I}(y_i)</math> is the [[information content]] of the [[Outcome (probability)|outcome]] of <math>Y</math> taking the value <math>y_i</math>. The entropy of <math>Y</math> conditioned on <math>X</math> taking the value <math>x</math> is defined analogously by [[conditional expectation]]:  
 
 
 
In general, a chain rule for multiple random variables holds:
 
 
一般来说,多个随机变量的链式规则适用于:
 
  
 
:<math>\Eta(Y|X=x)
 
:<math>\Eta(Y|X=x)
 
 
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
 
= -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}.</math>
 
<math> \Eta(X_1,X_2,\ldots,X_n) =
 
 
< math > Eta (x1,x2,ldots,xn) =
 
 
 
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
 
Note that <math>\Eta(Y|X)</math> is the result of averaging <math>\Eta(Y|X=x)</math> over all possible values <math>x</math> that <math>X</math> may take. Also, if the above sum is taken over a sample <math>y_1, \dots, y_n</math>, the expected value <math>E_X[ \Eta(y_1, \dots, y_n \mid X = x)]</math> is known in some domains as '''equivocation'''.<ref>{{cite journal|author1=Hellman, M.|author2=Raviv, J.|year=1970|title=Probability of error, equivocation, and the Chernoff bound|journal=IEEE Transactions on Information Theory|volume=16|issue=4|pp=368-372}}</ref>
 
\sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math>
 
 
Sum { i = 1} ^ n Eta (x _ i | x _ 1,ldots,x _ { i-1}) </math >
 
 
 
  
 
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
 
Given [[Discrete random variable|discrete random variables]] <math>X</math> with image <math>\mathcal X</math> and <math>Y</math> with image <math>\mathcal Y</math>, the conditional entropy of <math>Y</math> given <math>X</math> is defined as the weighted sum of <math>\Eta(Y|X=x)</math> for each possible value of <math>x</math>, using  <math>p(x)</math> as the weights:<ref name=cover1991>{{cite book|isbn=0-471-06259-6|year=1991|authorlink1=Thomas M. Cover|author1=T. Cover|author2=J. Thomas|title=Elements of Information Theory|url=https://archive.org/details/elementsofinform0000cove|url-access=registration}}</ref>{{rp|15}}
 
It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.
 
 
除了用加法代替乘法之外,它的形式与概率论的链式法则相似。
 
 
 
  
 
:<math>
 
:<math>
 
 
\begin{align}
 
\begin{align}
 
Bayes' rule for conditional entropy states
 
 
条件熵的贝叶斯规则
 
 
 
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
 
\Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\
 
<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
 
[数学] Eta (y | x) ,= ,Eta (x | y)-Eta (x) + Eta (y)
 
 
 
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
 
& =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\
 
 
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\
 
Proof. <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
 
证据。Eta (y | x) = Eta (x,y)-Eta (x) | math > Eta (x | y) = Eta (y,x)-Eta (y).对称意味着 Eta (x,y) = Eta (y,x)。减去这两个方程就得到了贝叶斯定律。
 
 
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\
 
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
 
& =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\
 
If <math>Y</math> is conditionally independent of <math>Z</math> given <math>X</math> we have:
 
 
如果[数学] y </math > 是条件独立于[数学] z </math > 给定 < 数学 > x </math > 我们有:
 
 
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
& = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\
 
 
\end{align}
 
\end{align}
 
<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
 
[ math ] Eta (y | x,z) ,= ,Eta (y | x)
 
 
 
</math>
 
</math>
 
 
  
 
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
 
<!-- This paragraph is incorrect; the last line is not the KL divergence between any two distributions, since p(x) is [in general] not a valid distribution over the domains of X and Y. The last formula above is the [[Kullback-Leibler divergence]], also known as relative entropy. Relative entropy is always positive, and vanishes if and only if <math>p(x,y) = p(x)</math>. This is when knowing <math>x</math> tells us everything about <math>y</math>.  ADDED: Could this comment be out of date since the KL divergence is not mentioned above? November 2014 -->
 
For any <math>X</math> and <math>Y</math>:
 
 
对于任意的 < math > x </math > 和 < math > > y </math > :
 
 
 
 
<math display="block">\begin{align}
 
 
(数学显示 = “ block” > begin { align })
 
  
 
==Properties==
 
==Properties==
 
  \Eta(Y|X) &\le \Eta(Y) \, \\
 
 
埃塔(y | x)及埃塔(y) ,
 
 
 
===Conditional entropy equals zero===
 
===Conditional entropy equals zero===
 
  \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
 
eta (x,y) & = Eta (x | y) + Eta (y | x) + 操作数名{ i }(x; y) ,qquad
 
 
 
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
 
<math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>.
 
  \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
 
 
Eta (x,y) & = Eta (x) + Eta (y)-操作员名称{ i }(x; y) ,,
 
 
 
 
  \operatorname{I}(X;Y) &\le \Eta(X),\,
 
 
操作者名{ i }(x; y) & le Eta (x) ,,
 
  
 
===Conditional entropy of independent random variables===
 
===Conditional entropy of independent random variables===
 
\end{align}</math>
 
 
结束{ align } </math >
 
 
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
 
Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]].
 
 
 
where <math>\operatorname{I}(X;Y)</math> is the mutual information between <math>X</math> and <math>Y</math>.
 
 
其中,“数学”和“数学”之间的相互信息。
 
  
 
===Chain rule===
 
===Chain rule===
 
 
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
 
Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy:
 
For independent <math>X</math> and <math>Y</math>:
 
 
对于独立的《数学》和《数学》 :
 
 
 
  
 
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
 
:<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}}
 
<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
 
Eta (y | x) = Eta (y) </math > and < math > Eta (x | y) = Eta (x) ,</math >
 
 
 
  
 
The chain rule follows from the above definition of conditional entropy:
 
The chain rule follows from the above definition of conditional entropy:
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given random variate <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
 
虽然对于给定的随机变量来说,特定条件熵的 Eta (x | y = y) </math > </math > 可能比 </math > Eta (x) </math > </math > ,< math > Eta (x | y) </math > 不能超过 math > Eta (x) </math > 。
 
 
 
  
 
:<math>\begin{align}  
 
:<math>\begin{align}  
 
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
 
\Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt]
 
 
  &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
 
  &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt]
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let <math>X</math> and <math>Y</math> be a continuous random variables with a joint probability density function <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as
 
 
上面的定义适用于离散随机变量。离散条件熵的连续形式称为条件微分(或连续)熵。设 x 是连续随机变量,f (x,y)是连续随机概率密度函数。微分条件熵 < math > h (x | y) </math > 被定义为
 
 
 
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
  &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt]
 
 
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
 
  & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt]
 
{{Equation box 1
 
 
{方程式方框1
 
 
 
  & = \Eta(X,Y) - \Eta(X).  
 
  & = \Eta(X,Y) - \Eta(X).  
 
|indent =
 
 
2012年10月22日
 
 
 
\end{align}</math>
 
\end{align}</math>
 
|title=
 
 
2012年10月11日
 
 
 
 
|equation = }}
 
 
| equation = }
 
  
 
In general, a chain rule for multiple random variables holds:
 
In general, a chain rule for multiple random variables holds:
 
|cellpadding= 6
 
 
6
 
 
 
 
|border
 
 
边界
 
  
 
:<math> \Eta(X_1,X_2,\ldots,X_n) =
 
:<math> \Eta(X_1,X_2,\ldots,X_n) =
 
|border colour = #0073CF
 
 
0073CF
 
 
 
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
 
  \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}}
 
|background colour=#F5FFFA}}
 
 
5/fffa }}
 
 
 
  
 
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
 
It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used.
 
 
 
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
 
 
与离散随机变量的条件熵相反,条件微分熵可能是负的。
 
  
 
===Bayes' rule===
 
===Bayes' rule===
 
 
[[Bayes' rule]] for conditional entropy states
 
[[Bayes' rule]] for conditional entropy states
 
As in the discrete case there is a chain rule for differential entropy:
 
 
在离散情况下,微分熵有一个链式规则:
 
 
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
:<math>\Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y).</math>
 
<math>h(Y|X)\,=\,h(X,Y)-h(X)</math>
 
 
H (y | x) ,= ,h (x,y)-h (x)
 
 
 
 
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
 
 
然而,请注意,如果所涉及的微分熵不存在或者是无限的,那么这个规则可能不成立。
 
  
 
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
''Proof.'' <math>\Eta(Y|X) = \Eta(X,Y) - \Eta(X)</math> and <math>\Eta(X|Y) = \Eta(Y,X) - \Eta(Y)</math>. Symmetry entails <math>\Eta(X,Y) = \Eta(Y,X)</math>. Subtracting the two equations implies Bayes' rule.
 
 
 
Joint differential entropy is also used in the definition of the mutual information between continuous random variables:
 
 
联合微分熵也用于连续随机变量之间互信息的定义:
 
  
 
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
 
If <math>Y</math> is [[Conditional independence|conditionally independent]] of <math>Z</math> given <math>X</math> we have:
 
<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
 
 
(x,y) = h (x)-h (x | y) = h (y)-h (y | x) </math >
 
 
 
  
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
:<math>\Eta(Y|X,Z) \,=\, \Eta(Y|X).</math>
 
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.
 
 
当且仅当 < math > x </math > 和 < math > y </math > 是独立的。
 
 
 
  
 
===Other properties===
 
===Other properties===
 
 
For any <math>X</math> and <math>Y</math>:
 
For any <math>X</math> and <math>Y</math>:
 
The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:
 
 
条件微分熵对估计量的期望平方误差产生一个下限。对于任何一个随机变量,观察值 < math > y </math > 和估计值 < math > widedhat { x } </math > ,下面是:
 
 
 
:<math display="block">\begin{align}
 
:<math display="block">\begin{align}
 
<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
 
 
< math display = " block" > mathbb { e } left [ bigl (x-widehat { x }{(y)} bigr) ^ 2 right ]
 
 
 
   \Eta(Y|X) &\le \Eta(Y) \, \\
 
   \Eta(Y|X) &\le \Eta(Y) \, \\
 
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
 
 
1}{2 pi e } e ^ {2 h (x | y)} </math >
 
 
 
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
   \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\
 
 
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
 
   \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\
 
This is related to the uncertainty principle from quantum mechanics.
 
 
这与量子力学的不确定性原理有关。
 
 
 
   \operatorname{I}(X;Y) &\le \Eta(X),\,
 
   \operatorname{I}(X;Y) &\le \Eta(X),\,
 
 
\end{align}</math>
 
\end{align}</math>
 
 
 
In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.
 
 
在量子信息论中,条件熵被推广为条件量子熵。后者可以采取负值,不像它的古典对应物。
 
  
 
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
 
where <math>\operatorname{I}(X;Y)</math> is the [[mutual information]] between <math>X</math> and <math>Y</math>.
 
 
  
 
For independent <math>X</math> and <math>Y</math>:
 
For independent <math>X</math> and <math>Y</math>:
 
 
  
 
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
:<math>\Eta(Y|X) = \Eta(Y) </math> and <math>\Eta(X|Y) = \Eta(X) \, </math>
 
 
  
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
Although the specific-conditional entropy <math>\Eta(X|Y=y)</math> can be either less or greater than <math>\Eta(X)</math> for a given [[random variate]] <math>y</math> of <math>Y</math>, <math>\Eta(X|Y)</math> can never exceed <math>\Eta(X)</math>.
 
 
  
 
== Conditional differential entropy ==
 
== Conditional differential entropy ==
 
 
=== Definition ===
 
=== Definition ===
 
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
 
The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called ''conditional differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential conditional entropy <math>h(X|Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
  
 +
{{Equation box 1
 +
|indent =
 +
|title=
 +
|equation = {{NumBlk||<math>h(X|Y) = -\int_{\mathcal X, \mathcal Y} f(x,y)\log f(x|y)\,dx dy</math>|{{EquationRef|Eq.2}}}}
 +
|cellpadding= 6
 +
|border
 +
|border colour = #0073CF
 +
|background colour=#F5FFFA}}
  
 +
=== Properties ===
 +
In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.
  
{{Equation box 1
+
As in the discrete case there is a chain rule for differential entropy:
 +
:<math>h(Y|X)\,=\,h(X,Y)-h(X)</math><ref name=cover1991 />{{rp|253}}
 +
Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.
  
Category:Entropy and information
+
Joint differential entropy is also used in the definition of the [[mutual information]] between continuous random variables:
 +
:<math>\operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X)</math>
  
类别: 熵和信息
+
<math>h(X|Y) \le h(X)</math> with equality if and only if <math>X</math> and <math>Y</math> are independent.<ref name=cover1991 />{{rp|253}}
  
|indent =
+
===Relation to estimator error===
 +
The conditional differential entropy yields a lower bound on the expected squared error of an [[estimator]]. For any random variable <math>X</math>, observation <math>Y</math> and estimator <math>\widehat{X}</math> the following holds:<ref name=cover1991 />{{rp|255}}
 +
:<math display="block">\mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right]
 +
\ge \frac{1}{2\pi e}e^{2h(X|Y)}</math>
  
Category:Information theory
+
This is related to the [[uncertainty principle]] from [[quantum mechanics]].
  
范畴: 信息论
+
==Generalization to quantum theory==
 +
In [[quantum information theory]], the conditional entropy is generalized to the [[conditional quantum entropy]]. The latter can take negative values, unlike its classical counterpart.
  
<noinclude>
+
== See also ==
 +
* [[Entropy (information theory)]]
 +
* [[Mutual information]]
 +
* [[Conditional quantum entropy]]
 +
* [[Variation of information]]
 +
* [[Entropy power inequality]]
 +
* [[Likelihood function]]
  
<small>This page was moved from [[wikipedia:en:Conditional entropy]]. Its edit history can be viewed at [[条件熵/edithistory]]</small></noinclude>
+
==References==
 +
{{Reflist}}
  
[[Category:待整理页面]]
+
[[Category:Entropy and information]]
 +
[[Category:Information theory]]

2020年10月26日 (一) 09:42的版本

此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。

模板:Information theory

Venn diagram showing additive and subtractive relationships various information measures associated with correlated variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]. The area contained by both circles is the joint entropy [math]\displaystyle{ \Eta(X,Y) }[/math]. The circle on the left (red and violet) is the individual entropy [math]\displaystyle{ \Eta(X) }[/math], with the red being the conditional entropy [math]\displaystyle{ \Eta(X|Y) }[/math]. The circle on the right (blue and violet) is [math]\displaystyle{ \Eta(Y) }[/math], with the blue being [math]\displaystyle{ \Eta(Y|X) }[/math]. The violet is the mutual information [math]\displaystyle{ \operatorname{I}(X;Y) }[/math].

In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable [math]\displaystyle{ Y }[/math] given that the value of another random variable [math]\displaystyle{ X }[/math] is known. Here, information is measured in shannons, nats, or hartleys. The entropy of [math]\displaystyle{ Y }[/math] conditioned on [math]\displaystyle{ X }[/math] is written as [math]\displaystyle{ \Eta(Y|X) }[/math].

Definition

The conditional entropy of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math] is defined as

[math]\displaystyle{ \Eta(Y|X)\ = -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)} }[/math]

 

 

 

 

(Eq.1)

where [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ \mathcal Y }[/math] denote the support sets of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].

Note: It is conventioned that the expressions [math]\displaystyle{ 0 \log 0 }[/math] and [math]\displaystyle{ 0 \log c/0 }[/math] for fixed [math]\displaystyle{ c \gt 0 }[/math] should be treated as being equal to zero. This is because [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \,c/\theta = 0 }[/math] and [math]\displaystyle{ \lim_{\theta\to0^+} \theta\, \log \theta = 0 }[/math][1]

Intuitive explanation of the definition : According to the definition, [math]\displaystyle{ \displaystyle H( Y|X) =\mathbb{E}( \ f( X,Y) \ ) }[/math] where [math]\displaystyle{ \displaystyle f:( x,y) \ \rightarrow -\log( \ p( y|x) \ ) . }[/math] [math]\displaystyle{ \displaystyle f }[/math] associates to [math]\displaystyle{ \displaystyle ( x,y) }[/math] the information content of [math]\displaystyle{ \displaystyle ( Y=y) }[/math] given [math]\displaystyle{ \displaystyle (X=x) }[/math], which is the amount of information needed to describe the event [math]\displaystyle{ \displaystyle (Y=y) }[/math] given [math]\displaystyle{ (X=x) }[/math]. According to the law of large numbers, [math]\displaystyle{ \displaystyle H(Y|X) }[/math] is the arithmetic mean of a large number of independent realizations of [math]\displaystyle{ \displaystyle f(X,Y) }[/math].

Motivation

Let [math]\displaystyle{ \Eta(Y|X=x) }[/math] be the entropy of the discrete random variable [math]\displaystyle{ Y }[/math] conditioned on the discrete random variable [math]\displaystyle{ X }[/math] taking a certain value [math]\displaystyle{ x }[/math]. Denote the support sets of [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] by [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ \mathcal Y }[/math]. Let [math]\displaystyle{ Y }[/math] have probability mass function [math]\displaystyle{ p_Y{(y)} }[/math]. The unconditional entropy of [math]\displaystyle{ Y }[/math] is calculated as [math]\displaystyle{ \Eta(Y) := \mathbb{E}[\operatorname{I}(Y)] }[/math], i.e.

[math]\displaystyle{ \Eta(Y) = \sum_{y\in\mathcal Y} {\mathrm{Pr}(Y=y)\,\mathrm{I}(y)} = -\sum_{y\in\mathcal Y} {p_Y(y) \log_2{p_Y(y)}}, }[/math]

where [math]\displaystyle{ \operatorname{I}(y_i) }[/math] is the information content of the outcome of [math]\displaystyle{ Y }[/math] taking the value [math]\displaystyle{ y_i }[/math]. The entropy of [math]\displaystyle{ Y }[/math] conditioned on [math]\displaystyle{ X }[/math] taking the value [math]\displaystyle{ x }[/math] is defined analogously by conditional expectation:

[math]\displaystyle{ \Eta(Y|X=x) = -\sum_{y\in\mathcal Y} {\Pr(Y = y|X=x) \log_2{\Pr(Y = y|X=x)}}. }[/math]

Note that [math]\displaystyle{ \Eta(Y|X) }[/math] is the result of averaging [math]\displaystyle{ \Eta(Y|X=x) }[/math] over all possible values [math]\displaystyle{ x }[/math] that [math]\displaystyle{ X }[/math] may take. Also, if the above sum is taken over a sample [math]\displaystyle{ y_1, \dots, y_n }[/math], the expected value [math]\displaystyle{ E_X[ \Eta(y_1, \dots, y_n \mid X = x)] }[/math] is known in some domains as equivocation.[2]

Given discrete random variables [math]\displaystyle{ X }[/math] with image [math]\displaystyle{ \mathcal X }[/math] and [math]\displaystyle{ Y }[/math] with image [math]\displaystyle{ \mathcal Y }[/math], the conditional entropy of [math]\displaystyle{ Y }[/math] given [math]\displaystyle{ X }[/math] is defined as the weighted sum of [math]\displaystyle{ \Eta(Y|X=x) }[/math] for each possible value of [math]\displaystyle{ x }[/math], using [math]\displaystyle{ p(x) }[/math] as the weights:[3]:15

[math]\displaystyle{ \begin{align} \Eta(Y|X)\ &\equiv \sum_{x\in\mathcal X}\,p(x)\,\Eta(Y|X=x)\\ & =-\sum_{x\in\mathcal X} p(x)\sum_{y\in\mathcal Y}\,p(y|x)\,\log\, p(y|x)\\ & =-\sum_{x\in\mathcal X}\sum_{y\in\mathcal Y}\,p(x,y)\,\log\,p(y|x)\\ & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log\,p(y|x)\\ & =-\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x,y)} {p(x)}. \\ & = \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \frac {p(x)} {p(x,y)}. \\ \end{align} }[/math]


Properties

Conditional entropy equals zero

[math]\displaystyle{ \Eta(Y|X)=0 }[/math] if and only if the value of [math]\displaystyle{ Y }[/math] is completely determined by the value of [math]\displaystyle{ X }[/math].

Conditional entropy of independent random variables

Conversely, [math]\displaystyle{ \Eta(Y|X) = \Eta(Y) }[/math] if and only if [math]\displaystyle{ Y }[/math] and [math]\displaystyle{ X }[/math] are independent random variables.

Chain rule

Assume that the combined system determined by two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] has joint entropy [math]\displaystyle{ \Eta(X,Y) }[/math], that is, we need [math]\displaystyle{ \Eta(X,Y) }[/math] bits of information on average to describe its exact state. Now if we first learn the value of [math]\displaystyle{ X }[/math], we have gained [math]\displaystyle{ \Eta(X) }[/math] bits of information. Once [math]\displaystyle{ X }[/math] is known, we only need [math]\displaystyle{ \Eta(X,Y)-\Eta(X) }[/math] bits to describe the state of the whole system. This quantity is exactly [math]\displaystyle{ \Eta(Y|X) }[/math], which gives the chain rule of conditional entropy:

[math]\displaystyle{ \Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X). }[/math][3]:17

The chain rule follows from the above definition of conditional entropy:

[math]\displaystyle{ \begin{align} \Eta(Y|X) &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log \left(\frac{p(x)}{p(x,y)} \right) \\[4pt] &= \sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)(\log (p(x))-\log (p(x,y))) \\[4pt] &= -\sum_{x\in\mathcal X, y\in\mathcal Y}p(x,y)\log (p(x,y)) + \sum_{x\in\mathcal X, y\in\mathcal Y}{p(x,y)\log(p(x))} \\[4pt] & = \Eta(X,Y) + \sum_{x \in \mathcal X} p(x)\log (p(x) ) \\[4pt] & = \Eta(X,Y) - \Eta(X). \end{align} }[/math]

In general, a chain rule for multiple random variables holds:

[math]\displaystyle{ \Eta(X_1,X_2,\ldots,X_n) = \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) }[/math][3]:22

It has a similar form to chain rule in probability theory, except that addition instead of multiplication is used.

Bayes' rule

Bayes' rule for conditional entropy states

[math]\displaystyle{ \Eta(Y|X) \,=\, \Eta(X|Y) - \Eta(X) + \Eta(Y). }[/math]

Proof. [math]\displaystyle{ \Eta(Y|X) = \Eta(X,Y) - \Eta(X) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(Y,X) - \Eta(Y) }[/math]. Symmetry entails [math]\displaystyle{ \Eta(X,Y) = \Eta(Y,X) }[/math]. Subtracting the two equations implies Bayes' rule.

If [math]\displaystyle{ Y }[/math] is conditionally independent of [math]\displaystyle{ Z }[/math] given [math]\displaystyle{ X }[/math] we have:

[math]\displaystyle{ \Eta(Y|X,Z) \,=\, \Eta(Y|X). }[/math]

Other properties

For any [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:

[math]\displaystyle{ \begin{align} \Eta(Y|X) &\le \Eta(Y) \, \\ \Eta(X,Y) &= \Eta(X|Y) + \Eta(Y|X) + \operatorname{I}(X;Y),\qquad \\ \Eta(X,Y) &= \Eta(X) + \Eta(Y) - \operatorname{I}(X;Y),\, \\ \operatorname{I}(X;Y) &\le \Eta(X),\, \end{align} }[/math]

where [math]\displaystyle{ \operatorname{I}(X;Y) }[/math] is the mutual information between [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math].

For independent [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math]:

[math]\displaystyle{ \Eta(Y|X) = \Eta(Y) }[/math] and [math]\displaystyle{ \Eta(X|Y) = \Eta(X) \, }[/math]

Although the specific-conditional entropy [math]\displaystyle{ \Eta(X|Y=y) }[/math] can be either less or greater than [math]\displaystyle{ \Eta(X) }[/math] for a given random variate [math]\displaystyle{ y }[/math] of [math]\displaystyle{ Y }[/math], [math]\displaystyle{ \Eta(X|Y) }[/math] can never exceed [math]\displaystyle{ \Eta(X) }[/math].

Conditional differential entropy

Definition

The above definition is for discrete random variables. The continuous version of discrete conditional entropy is called conditional differential (or continuous) entropy. Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be a continuous random variables with a joint probability density function [math]\displaystyle{ f(x,y) }[/math]. The differential conditional entropy [math]\displaystyle{ h(X|Y) }[/math] is defined as[3]:249

[math]\displaystyle{ h(X|Y) = -\int_{\mathcal X, \mathcal Y} f(x,y)\log f(x|y)\,dx dy }[/math]

 

 

 

 

(Eq.2)

Properties

In contrast to the conditional entropy for discrete random variables, the conditional differential entropy may be negative.

As in the discrete case there is a chain rule for differential entropy:

[math]\displaystyle{ h(Y|X)\,=\,h(X,Y)-h(X) }[/math][3]:253

Notice however that this rule may not be true if the involved differential entropies do not exist or are infinite.

Joint differential entropy is also used in the definition of the mutual information between continuous random variables:

[math]\displaystyle{ \operatorname{I}(X,Y)=h(X)-h(X|Y)=h(Y)-h(Y|X) }[/math]

[math]\displaystyle{ h(X|Y) \le h(X) }[/math] with equality if and only if [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are independent.[3]:253

Relation to estimator error

The conditional differential entropy yields a lower bound on the expected squared error of an estimator. For any random variable [math]\displaystyle{ X }[/math], observation [math]\displaystyle{ Y }[/math] and estimator [math]\displaystyle{ \widehat{X} }[/math] the following holds:[3]:255

[math]\displaystyle{ \mathbb{E}\left[\bigl(X - \widehat{X}{(Y)}\bigr)^2\right] \ge \frac{1}{2\pi e}e^{2h(X|Y)} }[/math]

This is related to the uncertainty principle from quantum mechanics.

Generalization to quantum theory

In quantum information theory, the conditional entropy is generalized to the conditional quantum entropy. The latter can take negative values, unlike its classical counterpart.

See also

References

  1. "David MacKay: Information Theory, Pattern Recognition and Neural Networks: The Book". www.inference.org.uk. Retrieved 2019-10-25.
  2. Hellman, M.; Raviv, J. (1970). "Probability of error, equivocation, and the Chernoff bound". IEEE Transactions on Information Theory. 16 (4): 368–372.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 T. Cover; J. Thomas (1991). Elements of Information Theory. ISBN 0-471-06259-6. https://archive.org/details/elementsofinform0000cove.