第91行: |
第91行: |
| | | |
| == Properties 属性 == | | == Properties 属性 == |
− | ===Conditional entropy equals zero=== | + | === Conditional entropy equals zero 条件熵等于零 === |
| <math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. | | <math>\Eta(Y|X)=0</math> if and only if the value of <math>Y</math> is completely determined by the value of <math>X</math>. |
| | | |
− | ===Conditional entropy of independent random variables=== | + | 当且仅当<math>Y</math>的值完全由<math>X</math>的值确定时,才为<math>H(Y|X)=0</math>。 |
| + | |
| + | |
| + | |
| + | === Conditional entropy of independent random variables 独立随机变量的条件熵 === |
| Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. | | Conversely, <math>\Eta(Y|X) = \Eta(Y)</math> if and only if <math>Y</math> and <math>X</math> are [[independent random variables]]. |
| | | |
− | ===Chain rule=== | + | 相反,当且仅当<math>Y</math>和<math>X</math>是独立随机变量时,则为<math>H(Y|X) =H(Y)</math>。 |
− | Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>\Eta(X,Y)</math>, that is, we need <math>\Eta(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>\Eta(X)</math> bits of information. Once <math>X</math> is known, we only need <math>\Eta(X,Y)-\Eta(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>\Eta(Y|X)</math>, which gives the ''chain rule'' of conditional entropy: | + | |
| + | |
| + | |
| + | === Chain rule 链式法则 === |
| + | Assume that the combined system determined by two random variables <math>X</math> and <math>Y</math> has [[joint entropy]] <math>H(X,Y)</math>, that is, we need <math>H(X,Y)</math> bits of information on average to describe its exact state. Now if we first learn the value of <math>X</math>, we have gained <math>H(X)</math> bits of information. Once <math>X</math> is known, we only need <math>H(X,Y)-H(X)</math> bits to describe the state of the whole system. This quantity is exactly <math>H(Y|X)</math>, which gives the ''chain rule'' of conditional entropy: |
| + | |
| + | 假设由两个随机变量<math>X</math>和<math>Y</math>确定的组合系统具有联合熵<math>H(X,Y)</math>,也就是说,我们通常需要<math>H(X,Y)</math>位信息来描述其确切状态。现在,如果我们首先获得<math>X</math>的值,我们将知晓<math>H(X)</math>位信息。一旦知道了<math>X</math>的值,我们就可以通过<math>H(X,Y)</math>-<math>H(X)</math>位来描述整个系统的状态。这个数量恰好是<math>H(Y|X)</math>,它给出了条件熵的链式法则: |
| + | |
| | | |
| :<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}} | | :<math>\Eta(Y|X)\, = \, \Eta(X,Y)- \Eta(X).</math><ref name=cover1991 />{{rp|17}} |
| + | |
| | | |
| The chain rule follows from the above definition of conditional entropy: | | The chain rule follows from the above definition of conditional entropy: |
| + | |
| + | 链式法则遵循以上条件熵的定义: |
| + | |
| | | |
| :<math>\begin{align} | | :<math>\begin{align} |
第111行: |
第126行: |
| & = \Eta(X,Y) - \Eta(X). | | & = \Eta(X,Y) - \Eta(X). |
| \end{align}</math> | | \end{align}</math> |
| + | |
| | | |
| In general, a chain rule for multiple random variables holds: | | In general, a chain rule for multiple random variables holds: |
| + | |
| + | 通常情况下,多个随机变量的链式法则表示为: |
| + | |
| | | |
| :<math> \Eta(X_1,X_2,\ldots,X_n) = | | :<math> \Eta(X_1,X_2,\ldots,X_n) = |
| \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}} | | \sum_{i=1}^n \Eta(X_i | X_1, \ldots, X_{i-1}) </math><ref name=cover1991 />{{rp|22}} |
| + | |
| | | |
| It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used. | | It has a similar form to [[Chain rule (probability)|chain rule]] in probability theory, except that addition instead of multiplication is used. |
| + | |
| + | 除了使用加法而不是乘法之外,它具有与概率论中的链式法则类似的形式。 |
| + | |
| + | |
| | | |
| ===Bayes' rule=== | | ===Bayes' rule=== |