更改

跳到导航 跳到搜索
添加448字节 、 2020年10月31日 (六) 21:13
第369行: 第369行:  
政治有时被称为零和游戏。
 
政治有时被称为零和游戏。
   −
== Extensions ==
+
== Extensions 扩展==
      第379行: 第379行:  
In 1944, [[John von Neumann]] and [[Oskar Morgenstern]] proved that any non-zero-sum game for ''n'' players is equivalent to a zero-sum game with ''n''&nbsp;+&nbsp;1 players; the (''n''&nbsp;+&nbsp;1)th player representing the global profit or loss.<ref>{{cite book|url=https://press.princeton.edu/titles/7802.html |title=Theory of Games and Economic Behavior |publisher=Princeton University Press (1953) |date=June 25, 2005|accessdate=2018-02-25|isbn=9780691130613 }}</ref>
 
In 1944, [[John von Neumann]] and [[Oskar Morgenstern]] proved that any non-zero-sum game for ''n'' players is equivalent to a zero-sum game with ''n''&nbsp;+&nbsp;1 players; the (''n''&nbsp;+&nbsp;1)th player representing the global profit or loss.<ref>{{cite book|url=https://press.princeton.edu/titles/7802.html |title=Theory of Games and Economic Behavior |publisher=Princeton University Press (1953) |date=June 25, 2005|accessdate=2018-02-25|isbn=9780691130613 }}</ref>
   −
 
+
1944年,[[John von Neumann]]和[[Oskar Morgenstern]]证明了“n”玩家的任何非零和游戏都等价于一个“n”玩家+1玩家的零和游戏,即第(''n''&nbsp;+&nbsp;1)th 个玩家代表全球盈亏。<ref>{{cite book|url=https://press.princeton.edu/titles/7802.html |title=Theory of Games and Economic Behavior |publisher=Princeton University Press (1953) |date=June 25, 2005|accessdate=2018-02-25|isbn=9780691130613 }}</ref>
    
== Misunderstandings ==
 
== Misunderstandings ==
561

个编辑

导航菜单