更改

跳到导航 跳到搜索
删除1字节 、 2020年11月4日 (三) 17:09
第215行: 第215行:  
:<math>I(X;Y|Z) \ge 0</math>,
 
:<math>I(X;Y|Z) \ge 0</math>,
 
for discrete, jointly distributed random variables <math>X</math>, <math>Y</math> and <math>Z</math>.  This result has been used as a basic building block for proving other [[inequalities in information theory]], in particular, those known as Shannon-type inequalities. Conditional mutual information is also non-negative for continuous random variables under certain regularity conditions.<ref>{{cite book |last1=Polyanskiy |first1=Yury |last2=Wu |first2=Yihong |title=Lecture notes on information theory |date=2017 |page=30 |url=http://people.lids.mit.edu/yp/homepage/data/itlectures_v5.pdf}}</ref>
 
for discrete, jointly distributed random variables <math>X</math>, <math>Y</math> and <math>Z</math>.  This result has been used as a basic building block for proving other [[inequalities in information theory]], in particular, those known as Shannon-type inequalities. Conditional mutual information is also non-negative for continuous random variables under certain regularity conditions.<ref>{{cite book |last1=Polyanskiy |first1=Yury |last2=Wu |first2=Yihong |title=Lecture notes on information theory |date=2017 |page=30 |url=http://people.lids.mit.edu/yp/homepage/data/itlectures_v5.pdf}}</ref>
 +
 
对于离散,联合分布的随机变量X,Y和Z,如下不等式永远成立:
 
对于离散,联合分布的随机变量X,Y和Z,如下不等式永远成立:
   第222行: 第223行:     
该结果已被用作证明信息理论中其他不等式的基础,尤其是香农不等式。对于某些正则条件下的连续随机变量,条件交互信息也是非负的。
 
该结果已被用作证明信息理论中其他不等式的基础,尤其是香农不等式。对于某些正则条件下的连续随机变量,条件交互信息也是非负的。
  −
      
=== Interaction information 交互信息 ===
 
=== Interaction information 交互信息 ===
961

个编辑

导航菜单