| [[File:Nb3O7(OH)_self-organization2.jpg|400px|thumb|right|在200°C 的水热处理期间,微米级,<math>Nb_3O_7(OH)</math>立方体中的自组织。最初,无定形立方体逐渐转变为晶体纳米线的有序3D网格,如图模型所示。<ref>{{Cite journal | doi= 10.1039/C4TA02202E| title= Template-free synthesis of novel, highly-ordered 3D hierarchical Nb<sub>3</sub>O<sub>7</sub>(OH) superstructures with semiconductive and photoactive properties| journal= Journal of Materials Chemistry A| volume= 2| issue= 30| page= 12005| year= 2014| last1= Betzler | first1= S. B. | last2= Wisnet | first2= A. | last3= Breitbach | first3= B. | last4= Mitterbauer | first4= C. | last5= Weickert | first5= J. | last6= Schmidt-Mende | first6= L. | last7= Scheu | first7= C. |doi-access= free| url= https://kops.uni-konstanz.de/bitstream/123456789/28968/1/Betzler_289681.pdf}}</ref>]] | | [[File:Nb3O7(OH)_self-organization2.jpg|400px|thumb|right|在200°C 的水热处理期间,微米级,<math>Nb_3O_7(OH)</math>立方体中的自组织。最初,无定形立方体逐渐转变为晶体纳米线的有序3D网格,如图模型所示。<ref>{{Cite journal | doi= 10.1039/C4TA02202E| title= Template-free synthesis of novel, highly-ordered 3D hierarchical Nb<sub>3</sub>O<sub>7</sub>(OH) superstructures with semiconductive and photoactive properties| journal= Journal of Materials Chemistry A| volume= 2| issue= 30| page= 12005| year= 2014| last1= Betzler | first1= S. B. | last2= Wisnet | first2= A. | last3= Breitbach | first3= B. | last4= Mitterbauer | first4= C. | last5= Weickert | first5= J. | last6= Schmidt-Mende | first6= L. | last7= Scheu | first7= C. |doi-access= free| url= https://kops.uni-konstanz.de/bitstream/123456789/28968/1/Betzler_289681.pdf}}</ref>]] |
| '''自组织 Self-organization''', 在社会科学中 也被称为自发秩序,是指一种起源于初始无序系统的部分元素之间的局部相互作用、所产生出某种形式的整体秩序的过程。当有足够的能量可用时,该过程可以是自发的,不需要任何外部个体 agent进行控制。它通常是由看似随机的波动触发,并由正反馈放大。最终形成的自组织是完全分散的,分布在系统的所有组件中。因此,自组织通常是健壮的,能够生存下来或者自我修复严重的干扰。混沌理论讨论的自组织,如同无序、不可预测的大海中的确定性孤岛。 | | '''自组织 Self-organization''', 在社会科学中 也被称为自发秩序,是指一种起源于初始无序系统的部分元素之间的局部相互作用、所产生出某种形式的整体秩序的过程。当有足够的能量可用时,该过程可以是自发的,不需要任何外部个体 agent进行控制。它通常是由看似随机的波动触发,并由正反馈放大。最终形成的自组织是完全分散的,分布在系统的所有组件中。因此,自组织通常是健壮的,能够生存下来或者自我修复严重的干扰。混沌理论讨论的自组织,如同无序、不可预测的大海中的确定性孤岛。 |
− | 控制论专家海因茨·冯·福斯特 Heinz von Foerster 于1960年提出了“ 从噪声中获得秩序 Order from noise ” 的原理。<ref>Von Foerster, H. (1960). [http://e1020.pbworks.com/f/fulltext.pdf "On self-organizing systems and their environments"], pp. 31–50 in ''Self-organizing systems''. M.C. Yovits and S. Cameron (eds.), Pergamon Press, London</ref> 该原理指出,自组织是由随机扰动 “噪声” 促进的,该随机扰动使系统在其状态空间中探索各种状态。这增加了系统到达“强”或“深”吸引子池中的机会,然后系统会迅速进入吸引子本身。生物物理学家亨利·阿特兰 Henri Atlan 通过提出“ 噪声带来的复杂性 Complexity from noise,法语 le principe de complexité par le bruit ” 原理发展了这一概念,<ref>See [https://www.google.com/search?&tbm=bks&q=inauthor:%22Henri+Atlan%22%22complexity+from+noise%22 occurrences] on Google Books.</ref><ref>{{cite book |editor-last=François |editor-first=Charles |editor-link= |title=International Encyclopedia of Systems and Cybernetics |year=2011 |origyear=[https://books.google.com/books?id=SZxnQgAACAAJ 1997] |edition=2nd |publisher=Walter de Gruyter |location=Berlin |page=[https://books.google.com/?id=XCn2mn98uEAC&pg=PA107&dq=%22complexity+from+noise+principle%22+Atlan+1972 107] |isbn=978-3-1109-6801-9 |title-link= }}</ref> 该原理首见于1972年出版的《L'organisation biologique et lathéoriede l'information》,<ref>[https://www.google.com/search?&q=%22complexité+par+le+bruit%22%22L'Organisation+biologique+et+la+théorie+de+l'information%22+1972].</ref> 然后是1979年出版的《Entre le cristal et lafumée》。<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> or "order out of chaos".<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>热力学家伊利亚·普里戈吉因 Ilya Prigogine 提出了类似的原则,即“波动带来有序 Order through fluctuations ”<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> 或“混乱带来有序 Order out of chaos ”<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>。它也应用在用于解决问题和机器学习的模拟退火方法中。<ref>{{cite journal |last1=Ahmed |first1=Furqan |title=Simulated annealing variants for self-organized resource allocation in small cell networks |journal=Applied Soft Computing |last2=Tirkkonen |first2=Olav |date=January 2016 |volume=38|pages=762–70 |doi=10.1016/j.asoc.2015.10.028 }}</ref> | + | 控制论专家海因茨·冯·福斯特 Heinz von Foerster 于1960年提出了“ 从噪声中获得秩序 Order from noise ” 的原理。<ref>Von Foerster, H. (1960). [http://e1020.pbworks.com/f/fulltext.pdf "On self-organizing systems and their environments"], pp. 31–50 in ''Self-organizing systems''. M.C. Yovits and S. Cameron (eds.), Pergamon Press, London</ref> 该原理指出,自组织是由随机扰动 “噪声” 促进的,该随机扰动使系统在其状态空间中探索各种状态。这增加了系统到达“强”或“深”吸引子池中的机会,然后系统会迅速进入吸引子本身。生物物理学家亨利·阿特兰 Henri Atlan 通过提出“ 噪声带来的复杂性 Complexity from noise,法语 le principe de complexité par le bruit ” 原理发展了这一概念,<ref>See [https://www.google.com/search?&tbm=bks&q=inauthor:%22Henri+Atlan%22%22complexity+from+noise%22 occurrences] on Google Books.</ref><ref>{{cite book |editor-last=François |editor-first=Charles |editor-link= |title=International Encyclopedia of Systems and Cybernetics |year=2011 |origyear=[https://books.google.com/books?id=SZxnQgAACAAJ 1997] |edition=2nd |publisher=Walter de Gruyter |location=Berlin |page=[https://books.google.com/?id=XCn2mn98uEAC&pg=PA107&dq=%22complexity+from+noise+principle%22+Atlan+1972 107] |isbn=978-3-1109-6801-9 |title-link= }}</ref> 该原理首见于1972年出版的《L'organisation biologique et lathéoriede l'information》,<ref>[https://www.google.com/search?&q=%22complexité+par+le+bruit%22%22L'Organisation+biologique+et+la+théorie+de+l'information%22+1972].</ref> 然后是1979年出版的《Entre le cristal et lafumée》。<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> 热力学家伊利亚·普里戈吉因 Ilya Prigogine 提出了类似的原则,即“波动带来有序 Order through fluctuations ”<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> 或“混乱带来有序 Order out of chaos ”<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>。它也应用在用于解决问题和机器学习的模拟退火方法中。<ref>{{cite journal |last1=Ahmed |first1=Furqan |title=Simulated annealing variants for self-organized resource allocation in small cell networks |journal=Applied Soft Computing |last2=Tirkkonen |first2=Olav |date=January 2016 |volume=38|pages=762–70 |doi=10.1016/j.asoc.2015.10.028 }}</ref> |