第395行: |
第395行: |
| A. Münster carefully extends his definition of thermodynamic equilibrium for isolated systems by introducing a concept of contact equilibrium. This specifies particular processes that are allowed when considering thermodynamic equilibrium for non-isolated systems, with special concern for open systems, which may gain or lose matter from or to their surroundings. A contact equilibrium is between the system of interest and a system in the surroundings, brought into contact with the system of interest, the contact being through a special kind of wall; for the rest, the whole joint system is isolated. Walls of this special kind were also considered by C. Carathéodory, and are mentioned by other writers also. They are selectively permeable. They may be permeable only to mechanical work, or only to heat, or only to some particular chemical substance. Each contact equilibrium defines an intensive parameter; for example, a wall permeable only to heat defines an empirical temperature. A contact equilibrium can exist for each chemical constituent of the system of interest. In a contact equilibrium, despite the possible exchange through the selectively permeable wall, the system of interest is changeless, as if it were in isolated thermodynamic equilibrium. This scheme follows the general rule that "... we can consider an equilibrium only with respect to specified processes and defined experimental conditions." | | A. Münster carefully extends his definition of thermodynamic equilibrium for isolated systems by introducing a concept of contact equilibrium. This specifies particular processes that are allowed when considering thermodynamic equilibrium for non-isolated systems, with special concern for open systems, which may gain or lose matter from or to their surroundings. A contact equilibrium is between the system of interest and a system in the surroundings, brought into contact with the system of interest, the contact being through a special kind of wall; for the rest, the whole joint system is isolated. Walls of this special kind were also considered by C. Carathéodory, and are mentioned by other writers also. They are selectively permeable. They may be permeable only to mechanical work, or only to heat, or only to some particular chemical substance. Each contact equilibrium defines an intensive parameter; for example, a wall permeable only to heat defines an empirical temperature. A contact equilibrium can exist for each chemical constituent of the system of interest. In a contact equilibrium, despite the possible exchange through the selectively permeable wall, the system of interest is changeless, as if it were in isolated thermodynamic equilibrium. This scheme follows the general rule that "... we can consider an equilibrium only with respect to specified processes and defined experimental conditions." |
| | | |
− | 通过引入接触平衡的概念,A. Münster仔细地扩展了孤立系统热力学平衡的定义。这指定了在考虑非孤立系统的热力学平衡时允许的特定过程,并特别关心开放系统,这些开放系统可能从周围环境获得或丢失物质。利益系统和周围系统之间的接触平衡,通过一种特殊的墙与利益系统接触,其余的连接系统是孤立的。这种特殊类型的墙也被'''<font color="#ff8000">C.喀喇西奥多里 C.Carathéodory</font>'''考虑过,其他作家也提到过。它们具有选择性渗透性。它们可能只对机械工作有渗透性,或者只对热有渗透性,或者只对某种特定的化学物质有渗透性。每个接触平衡定义了一个强度参数; 例如,只能透热的壁定义了一个经验温度。对于感兴趣的体系的每一种化学成分,都可以存在接触平衡。在接触平衡中,尽管有可能通过选择性渗透壁进行交换,感兴趣的系统是不变的,好像它是在孤立的热力学平衡。这个方案遵循的一般规则是: “ ... ... 我们只能考虑特定过程和特定实验条件下的平衡。” | + | 通过引入接触平衡的概念,A. Münster仔细地扩展了孤立系统热力学平衡的定义。这指定了在考虑非孤立系统的热力学平衡时允许的特定过程,并特别关心开放系统,这些开放系统可能从周围环境获得或丢失物质。利益系统和周围系统之间的接触平衡,通过一种特殊的壁与利益系统接触,其余的连接系统是孤立的。这种特殊类型的壁也被'''<font color="#ff8000">C.喀喇西奥多里 C.Carathéodory</font>'''考虑过,其他作家也提到过。它们具有选择渗透性。它们可能只对机械工作有渗透性,或者只对热有渗透性,或者只对某种特定的化学物质有渗透性。每个接触平衡定义了一个强度参数; 例如,只能透热的壁定义了一个经验温度。对于感兴趣的体系中每一种化学成分,都可以存在接触平衡。在接触平衡中,尽管有可能通过选择性渗透壁进行交换,感兴趣的系统是不变的,好像它处在孤立的热力学平衡。这个方案遵循的一般规则是: “ ... ... 我们只能考虑特定过程和特定实验条件下的平衡。” |
| | | |
| | | |
第424行: |
第424行: |
| Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, thermodynamic equilibrium is said to exist." He is not here considering the presence of an external force field. | | Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, thermodynamic equilibrium is said to exist." He is not here considering the presence of an external force field. |
| | | |
− | 考虑到平衡状态,M.Bailyn写道: “每个密集型变量都有自己的平衡类型。”然后他定义了热平衡、力学平衡和物质平衡。因此,他写道: “如果所有的密集变量都是一致的,那么热力学平衡就是存在的。”他在这里没有考虑外力场的存在。 | + | 考虑到平衡状态,M.Bailyn写道: “每个强度变量都有自己的平衡类型。”然后他定义了热平衡、力学平衡和物质平衡。因此,他写道: “如果所有的强度变量都是一致的,那么热力学平衡就是存在的。”他在这里没有考虑外力场的存在。 |
| | | |
| | | |
| Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, ''thermodynamic equilibrium'' is said to exist." He is not here considering the presence of an external force field.<ref>Bailyn, M. (1994), p. 21.</ref> | | Considering equilibrium states, M. Bailyn writes: "Each intensive variable has its own type of equilibrium." He then defines thermal equilibrium, mechanical equilibrium, and material equilibrium. Accordingly, he writes: "If all the intensive variables become uniform, ''thermodynamic equilibrium'' is said to exist." He is not here considering the presence of an external force field.<ref>Bailyn, M. (1994), p. 21.</ref> |
| | | |
− | 考虑到平衡状态,M.Bailyn写道: “每个密集型变量都有自己的平衡类型。”然后他定义了热平衡、力学平衡和物质平衡。因此,他写道: “如果所有的密集变量都是一致的,那么热力学平衡就是存在的。”他在这里没有考虑外力场的存在。 | + | 考虑到平衡状态,M.Bailyn写道: “每个强度变量都有自己的平衡类型。”然后他定义了热平衡、力学平衡和物质平衡。因此,他写道: “如果所有的强度变量都是一致的,那么热力学平衡就是存在的。”他在这里没有考虑外力场的存在。 |
| | | |
| J.G. Kirkwood and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of thermodynamic equilibrium if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied. | | J.G. Kirkwood and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of thermodynamic equilibrium if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied. |
| | | |
− | J.G.Kirkwood 和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。热力学平衡状态可以由这个子类定义,只要满足其他一些条件。 | + | J.G.Kirkwood 和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的强度特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个强度性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的强度性质都相等。只要满足其他一些条件,热力学平衡状态可以由这个子类定义。 |
| | | |
| | | |
第439行: |
第439行: |
| [[John Gamble Kirkwood|J.G. Kirkwood]] and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of ''thermodynamic equilibrium'' if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.<ref>Kirkwood, J.G., Oppenheim, I. (1961), p. 2</ref> | | [[John Gamble Kirkwood|J.G. Kirkwood]] and I. Oppenheim define thermodynamic equilibrium as follows: "A system is in a state of ''thermodynamic equilibrium'' if, during the time period allotted for experimentation, (a) its intensive properties are independent of time and (b) no current of matter or energy exists in its interior or at its boundaries with the surroundings." It is evident that they are not restricting the definition to isolated or to closed systems. They do not discuss the possibility of changes that occur with "glacial slowness", and proceed beyond the time period allotted for experimentation. They note that for two systems in contact, there exists a small subclass of intensive properties such that if all those of that small subclass are respectively equal, then all respective intensive properties are equal. States of thermodynamic equilibrium may be defined by this subclass, provided some other conditions are satisfied.<ref>Kirkwood, J.G., Oppenheim, I. (1961), p. 2</ref> |
| | | |
− | '''<font color="#ff8000">J.G.柯克伍德 J.G.Kirkwood</font>'''和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。热力学平衡状态可以由这个子类定义,只要满足其他一些条件。 | + | '''<font color="#ff8000">J.G.柯克伍德 J.G.Kirkwood</font>'''和 I.Oppenheim 将热力学平衡定义为: “一个系统处于热力学平衡状态,如果,在分配给实验的时间内,(a)它的密集特性与时间无关,(b)它的内部或与周围环境的边界处没有物质或能量流。”显然,他们没有把定义限制在孤立的或封闭的系统。它们不讨论“缓慢”发生变化的可能性,并且超出了分配给实验的时间范围。他们注意到,对于两个相接触的系统,存在一个密集性质的小子类,如果这个小子类的所有子类都相等,那么所有各自的密集性质都相等。只要满足其他一些条件,热力学平衡状态可以由这个子类定义。 |
| | | |
| ==Characteristics of a state of internal thermodynamic equilibrium== | | ==Characteristics of a state of internal thermodynamic equilibrium== |