“进化稳定策略”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第1行: 第1行:
此词条由Jie初步翻译。由CecileLi初步审校。于2020.11.19再次审校,该词条专业性较强,修改过程中还是以文本为主,若有遗漏敬请谅解。
+
{{#seo:
建议将后文全文中的game的翻译改为“博弈”,玩家可改为参与者/生物/种群(中的)个体/进化的参与者——似乎是具有比喻义的词语
+
|keywords=进化均衡策略,随机稳定平衡,鹰鸽博弈,生物建模和进化博弈论
 
+
|description=是指一个种群在特定环境下采用的策略或策略组,。
{{short description|Strategy which, if adopted by a population in a given environment, cannot be invaded by any alternative strategy that is initially rare}}
 
 
 
{{Infobox equilibrium
 
 
 
{{Infobox equilibrium
 
 
 
{{Infobox equilibrium
 
 
 
|name          = Evolutionarily stable strategy
 
 
 
|name          = Evolutionarily stable strategy
 
 
 
进化均衡策略
 
 
 
|subsetof      = [[Nash equilibrium]]
 
 
 
|subsetof      = Nash equilibrium
 
 
 
|subsetof      = Nash equilibrium
 
 
 
|supersetof    = [[Stochastically stable equilibrium]], Stable [[Strong Nash equilibrium]]
 
 
 
|supersetof    = Stochastically stable equilibrium, Stable Strong Nash equilibrium
 
 
 
随机稳定平衡,稳定的强纳什均衡
 
 
 
|intersectwith = [[Subgame perfect equilibrium]], [[Trembling hand perfect equilibrium]], [[Perfect Bayesian equilibrium]]|
 
 
 
|intersectwith = Subgame perfect equilibrium, Trembling hand perfect equilibrium, Perfect Bayesian equilibrium|
 
 
 
子博弈完美/精炼纳什均衡,颤抖手完美均衡,完美/精炼贝叶斯均衡
 
 
 
|discoverer    = [[John Maynard Smith]] and [[George R. Price]]
 
 
 
|discoverer    = John Maynard Smith and George R. Price
 
 
 
约翰·梅纳德·史密斯和 乔治·R·普莱斯
 
 
 
|example      = [[Hawk-dove]]
 
 
 
|example      = Hawk-dove
 
 
 
例子:鹰鸽博弈
 
 
 
|usedfor      = [[Biology|Biological modeling]] and [[Evolutionary game theory]]
 
 
 
|usedfor      = Biological modeling and Evolutionary game theory
 
 
 
生物建模和进化博弈论
 
 
 
}}
 
 
 
}}
 
 
 
 
}}
 
}}
  
 +
***建议将后文全文中的game的翻译改为“博弈”,玩家可改为参与者/生物/种群(中的)个体/进化的参与者——似乎是具有比喻义的词语
  
 
+
'''进化均衡策略 Evolutionarily Stable Strategy(ESS)'''是指一个种群在特定环境下采用的策略或策略组,它具有不可渗透性,即该群体的进化策略不可能受到初期占比小的其他策略或策略组的影响。这与'''<font color="#ff8000"> 博弈论 Game Theory</font>''','''<font color="#ff8000"> 行为生态学 Behavioural Ecology</font>'''和'''<font color="#ff8000">进化心理学 Evolutionary Psychology</font>'''有关。进化均衡策略是'''<font color="#ff8000"> 纳什均衡 Nash equilibrium</font>'''的细化,相当于是稳定进化的纳什均衡:一旦该种群固定了所采用的策略,仅依靠自然选择过程就足以防止其他策略(如变异)的成功入侵。'''<font color="#32CD32">该理论并非通过有目的性地处理外部环境可能发生的变化,来引入新的种群进化选择力。 The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.</font>'''这一理论想要阐述的不是处理外部环境发生重大变化的可能性,而是这种变化会带来新的选择性力量。
An '''evolutionarily stable strategy''' ('''ESS''') is a [[strategy (game theory)|strategy]] (or set of strategies) which, if adopted by a [[population genetics|population]] in a given environment, is impenetrable, meaning that it cannot be invaded by any alternative strategy (or strategies) that are initially rare. It is relevant in [[game theory]], [[behavioural ecology]], and [[evolutionary psychology]]. An ESS is an [[equilibrium refinement]] of the [[Nash equilibrium]]. It is a Nash equilibrium that is "[[evolution]]arily" [[Ecological stability|stable]]: once it is [[Fixation (population genetics)|fixed]] in a population, [[natural selection]] alone is sufficient to prevent alternative ([[mutant]]) strategies from invading successfully. The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.
 
 
 
An evolutionarily stable strategy (ESS) is a strategy (or set of strategies) which, if adopted by a population in a given environment, is impenetrable, meaning that it cannot be invaded by any alternative strategy (or strategies) that are initially rare. It is relevant in game theory, behavioural ecology, and evolutionary psychology. An ESS is an equilibrium refinement of the Nash equilibrium. It is a Nash equilibrium that is "evolutionarily" stable: once it is fixed in a population, natural selection alone is sufficient to prevent alternative (mutant) strategies from invading successfully. The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.
 
 
 
'''<font color="#ff8000"> 进化均衡策略Evolutionarily Stable Strategy(ESS)</font>'''是指一个种群在特定环境下采用的策略或策略组,它具有不可渗透性,即该群体的进化策略不可能受到初期占比小的其他策略或策略组的影响。这与'''<font color="#ff8000"> 博弈论Game Theory</font>''','''<font color="#ff8000"> 行为生态学Behavioural Ecology</font>'''和'''<font color="#ff8000"> 进化心理学Evolutionary Psychology</font>'''有关。进化均衡策略是'''<font color="#ff8000"> 纳什均衡Nash equilibrium</font>'''的细化,相当于是稳定进化的纳什均衡:一旦该种群固定了所采用的策略,仅依靠自然选择过程就足以防止其他策略(如变异)的成功入侵。'''<font color="#32CD32">该理论并非通过有目的性地处理外部环境可能发生的变化,来引入新的种群进化选择力。</font>'''/这一理论想要阐述的不是处理外部环境发生重大变化的可能性,而是这种变化会带来新的选择性力量。
 
  
  
First published as a specific term in the 1972 book by John Maynard Smith,<ref name="OEJMS">{{cite book |author=Maynard Smith, J. |authorlink=John Maynard Smith |chapter=Game Theory and The Evolution of Fighting |title=On Evolution |publisher=Edinburgh University Press |year=1972 |isbn=0-85224-223-9 |url-access=registration |url=https://archive.org/details/onevolution0000mayn }}</ref> the ESS is widely used in [[behavioural ecology]] and [[economics]], and has been used in [[anthropology]], [[evolutionary psychology]], [[philosophy]], and [[political science]].
+
在1972年'''约翰·梅纳德·史密斯 John Maynard Smith'''出版的书中,<ref name="OEJMS">{{cite book |author=Maynard Smith, J. |authorlink=John Maynard Smith |chapter=Game Theory and The Evolution of Fighting |title=On Evolution |publisher=Edinburgh University Press |year=1972 |isbn=0-85224-223-9 |url-access=registration |url=https://archive.org/details/onevolution0000mayn }}</ref> 进化均衡策略首次作为一个特定的术语出现并被广泛应用于行为生态学和经济学之中。如今在人类学、进化心理学、哲学和政治学中,这一概念也已得到使用。
  
First published as a specific term in the 1972 book by John Maynard Smith, the ESS is widely used in behavioural ecology and economics, and has been used in anthropology, evolutionary psychology, philosophy, and political science.
 
  
在1972年约翰·梅纳德·史密斯John Maynard Smith出版的书中,进化均衡策略首次作为一个特定的术语出现并被广泛应用于行为生态学和经济学之中。如今在人类学、进化心理学、哲学和政治学中,这一概念也已得到使用。
+
==发展历史==
 +
'''进化均衡策略'''是由'''约翰·梅纳德·史密斯 John·Maynard·Smith'''和'''乔治·R·普赖斯 George·R·Price''' 在1973年的《Nature》杂志上提出并定义的。<ref name="JMSandP73">{{cite journal |doi=10.1038/246015a0 |author1=Maynard Smith, J. |authorlink1=John Maynard Smith |author2=Price, G.R. |authorlink2=George R. Price |title=The logic of animal conflict |journal=Nature |volume=246 |issue=5427 |pages=15–8 |year=1973 |bibcode=1973Natur.246...15S}}</ref>但是由于同行评审《Nature》中的论文花费了大量时间,导致在此之前,Maynard·Smith就在1972年的一本论文集《On Evolution》<ref name="OEJMS"/> 中发表了另一篇论文,因此有时学者们会选择引用他在1972年出版的《论进化论》.上发表的论文而非1973年《Nature》杂志上的,尽管通常《Nature》杂志上的论文很短,但是大学图书馆可能收藏有《Nature》的副本;随后1974年,Maynard·Smith在《理论生物学》杂志上又发表了一篇更长的论文。<ref>{{cite journal |doi=10.1016/0022-5193(74)90110-6 |author=Maynard Smith, J. |title=The Theory of Games and the Evolution of Animal Conflicts |journal=Journal of Theoretical Biology |volume=47 |issue=1 |pages=209–21 |year=1974 |pmid=4459582 |url=http://www.dklevine.com/archive/refs4448.pdf }}</ref> Maynard·Smith在1982年的新著作《演化与博弈论 Evolution and the Theory of Games》中,他又进一步解释了这个概念。<ref name="JMS82">{{cite book |author=Maynard Smith, John |title=Evolution and the Theory of Games |year=1982 |isbn=0-521-28884-3 |title-link=Evolution and the Theory of Games }}</ref>之后该版本的解释时常被引用。实际上,虽然往往没有引证给出,但是因为引用者已经假定了读者是熟悉它的,因此进化均衡策略已经成为了博弈论的核心。
  
  
 +
Maynard·Smith在同行评审普莱斯论文的时候读到了这个论点,随后他将这个口头论点数学形式化。之后Smith意识到Price并没有准备好去修改并发表他的文章,于是他就提出在文末加上Price名字让其成为作为合著者。
  
==History 发展历史==
 
  
Evolutionarily stable strategies were defined and introduced by [[John Maynard Smith]] and [[George R. Price]] in a 1973 ''[[Nature (journal)|Nature]]'' paper.<ref name="JMSandP73">{{cite journal |doi=10.1038/246015a0 |author1=Maynard Smith, J. |authorlink1=John Maynard Smith |author2=Price, G.R. |authorlink2=George R. Price |title=The logic of animal conflict |journal=Nature |volume=246 |issue=5427 |pages=15–8 |year=1973 |bibcode=1973Natur.246...15S}}</ref> Such was the time taken in peer-reviewing the paper for ''Nature'' that this was preceded by a 1972 essay by Maynard Smith in a book of essays titled ''On Evolution''.<ref name="OEJMS"/>  The 1972 essay is sometimes cited instead of the 1973 paper, but university libraries are much more likely to have copies of ''Nature''. Papers in ''Nature'' are usually short; in 1974, Maynard Smith published a longer paper in the ''[[Journal of Theoretical Biology]]''.<ref>{{cite journal |doi=10.1016/0022-5193(74)90110-6 |author=Maynard Smith, J. |title=The Theory of Games and the Evolution of Animal Conflicts |journal=Journal of Theoretical Biology |volume=47 |issue=1 |pages=209–21 |year=1974 |pmid=4459582 |url=http://www.dklevine.com/archive/refs4448.pdf }}</ref> Maynard Smith explains further in his 1982 book ''[[Evolution and the Theory of Games]]''.<ref name="JMS82">{{cite book |author=Maynard Smith, John |title=Evolution and the Theory of Games |year=1982 |isbn=0-521-28884-3 |title-link=Evolution and the Theory of Games }}</ref> Sometimes these are cited instead. In fact, the ESS has become so central to game theory that often no citation is given, as the reader is assumed to be familiar with it.
+
事实上“进化均衡”这个概念源自于麦克阿瑟 R·H·MacArthur<ref>{{cite book |author=MacArthur, R. H. |editor=Waterman T. |editor2=Horowitz H. |title=Theoretical and mathematical biology |publisher=Blaisdell |location=New York |year=1965 }}</ref>和汉密尔顿 W·D·Hamilton<ref>{{cite journal |doi=10.1126/science.156.3774.477 |author=Hamilton, W.D. |title=Extraordinary sex ratios |journal=Science |volume=156 |issue=3774 |pages=477–88 |year=1967 |pmid=6021675 |jstor=1721222|bibcode = 1967Sci...156..477H }}</ref>关于性别比例的研究,以及'''<font color="#ff8000">费雪原理 Fisher's principle</font>''',尤其是汉密尔顿(1967)提出的“'''<font color="#ff8000"> 无敌战略Unbeatable Strategy</font>'''”。随后1999年,Maynard·Smith因其对“进化均衡策略”概念的发展以及“行为进化博弈论“的应用研究做出了杰出贡献,与以上学者共同获得了著名的Crafoord奖。.<ref>[http://www.crafoordprize.se/press/arkivpressreleases/thecrafoordprize1999.5.32d4db7210df50fec2d800018201.html Press release] for the 1999 Crafoord Prize</ref>
  
Evolutionarily stable strategies were defined and introduced by John Maynard Smith and George R. Price in a 1973 Nature paper. Such was the time taken in peer-reviewing the paper for Nature that this was preceded by a 1972 essay by Maynard Smith in a book of essays titled On Evolution. (wiki后期添加的内容The 1972 essay is sometimes cited instead of the 1973 paper, but university libraries are much more likely to have copies of Nature. Papers in Nature are usually short; in 1974, Maynard Smith published a longer paper in the Journal of Theoretical Biology.[3] )Maynard Smith explains further in his 1982 book Evolution and the Theory of Games. Sometimes these are cited instead. In fact, the ESS has become so central to game theory that often no citation is given, as the reader is assumed to be familiar with it.
 
  
进化均衡策略是由约翰·梅纳德·史密斯(John·Maynard·Smith)和 乔治·R·普赖斯(George·R·Price) 在1973年的《自然》杂志上提出并定义的。但是由于同行评审《自然》中的论文花费了大量时间,导致在此之前,梅纳德`史密斯就在1972年的一本论文集《论进化论》中发表了另一篇论文,因此有时学者们会选择引用他在1972年出版的《论进化论》上发表的论文而非1973年《自然》杂志上的,尽管通常《自然》杂志上的论文很短,但是大学图书馆可能收藏有《自然》的副本;随后1974年,梅纳德·史密斯在《理论生物学》杂志上又发表了一篇更长的论文。梅纳德·史密斯在1982年的新著作《演化与博弈论Evolution and the Theory of Games》中,他又进一步解释了这个概念。之后该版本的解释时常被引用。实际上,虽然往往没有引证给出,但是因为引用者已经假定了读者是熟悉它的,因此进化均衡策略已经成为了博弈论的核心。
+
进化均衡策略的应用:
  
 +
* 进化均衡策略是理查德·道金斯 Richard Dawkins1976年最畅销的著作《自私的基因 The Selfish Gene》中用来分析进化的主要元素。
  
 +
* 由罗伯特·阿克塞尔罗德 Robert Axelrod在1984年创作出版的《合作的进化 The Evolution of Cooperation》一书中首次将进化均衡策略用于社会科学领域。从那时起,它就被广泛用于社会科学,包括人类学、经济学、哲学和政治学。
  
Maynard Smith mathematically formalised a verbal argument made by Price, which he read while peer-reviewing Price's paper. When Maynard Smith realized that the somewhat disorganised Price was not ready to revise his article for publication, he offered to add Price as co-author.
+
* 在社会科学中,人们最主要的兴趣不是将进化均衡策略作为生物进化的终点,而是将其作为文化进化或个体学习的终点。<ref name="AlexanderSEP">{{cite encyclopedia |url=http://plato.stanford.edu/entries/game-evolutionary/ |title=Evolutionary Game Theory |accessdate=31 August 2007 |last1=Alexander|first1=Jason McKenzie |date=23 May 2003 |encyclopedia=Stanford Encyclopedia of Philosophy}}</ref>
  
Maynard Smith mathematically formalised a verbal argument made by Price, which he read while peer-reviewing Price's paper. When Maynard Smith realized that the somewhat disorganised Price was not ready to revise his article for publication, he offered to add Price as co-author.
+
* 在进化心理学中,进化均衡策略主要被用作人类生物学进化的模型。
  
梅纳德·史密斯在同行评审普莱斯论文的时候读到了这个论点,随后他将这个口头论点数学形式化。之后史密斯意识到普莱斯并没有准备好去修改并发表他的文章,于是他就提出在文末加上普莱斯名字让其成为作为合著者。
 
  
 +
== 策略的假设与动机==
 +
在博弈论中,[[纳什均衡 Nash equilibrium]]相当于一种传统的解决方案概念,而这依赖于玩家的对它的认知。它假定玩家知道游戏的结构并且会有意识地尝试预测对手的行动以期最大程度地提高自己的收益。另外,纳什均衡也假定所有玩家都知道以下规则(请参阅'''<font color="#ff8000"> 常识性知识 Common Knowledge</font>''')。后来这些假设又被用于解释为什么游戏参与者们会选择纳什均衡策略。
  
 
The concept was derived from [[Robert MacArthur|R. H. MacArthur]]<ref>{{cite book |author=MacArthur, R. H. |authorlink=Robert MacArthur |editor=Waterman T. |editor2=Horowitz H. |title=Theoretical and mathematical biology |publisher=Blaisdell |location=New York |year=1965 }}</ref> and [[W. D. Hamilton]]'s<ref>{{cite journal |doi=10.1126/science.156.3774.477 |author=Hamilton, W.D. |authorlink=W. D. Hamilton |title=Extraordinary sex ratios |journal=Science |volume=156 |issue=3774 |pages=477–88 |year=1967 |pmid=6021675 |jstor=1721222|bibcode = 1967Sci...156..477H }}</ref> work on [[sex ratio]]s, derived from [[Fisher's principle]], especially Hamilton's (1967) concept of an [[unbeatable strategy]].  Maynard Smith was jointly awarded the 1999 [[Crafoord Prize]] for his development of the concept of evolutionarily stable strategies and the application of game theory to the evolution of behaviour.<ref>[http://www.crafoordprize.se/press/arkivpressreleases/thecrafoordprize1999.5.32d4db7210df50fec2d800018201.html Press release] for the 1999 Crafoord Prize</ref>
 
 
The concept was derived from R. H. MacArthur and W. D. Hamilton's work on sex ratios, derived from Fisher's principle, especially Hamilton's (1967) concept of an unbeatable strategy.  Maynard Smith was jointly awarded the 1999 Crafoord Prize for his development of the concept of evolutionarily stable strategies and the application of game theory to the evolution of behaviour.
 
 
事实上“进化均衡”这个概念源自于麦克阿瑟(R·H·MacArthur)和汉密尔顿(W·D·Hamilton)关于性别比例的研究,以及'''<font color="#ff8000"> 费雪原理Fisher's principle</font>''',尤其是汉密尔顿(1967)提出的“'''<font color="#ff8000"> 无敌战略Unbeatable Strategy</font>'''”。随后1999年,梅纳德·史密斯因其对“进化均衡策略”概念的发展以及“行为进化博弈论“的应用研究做出了杰出贡献,与以上学者共同获得了著名的Crafoord奖。
 
 
 
 
Uses of ESS:
 
Uses of ESS:
 
进化均衡策略的应用
 
 
* The ESS was a major element used to analyze evolution in [[Richard Dawkins]]' bestselling 1976 book ''[[The Selfish Gene]]''.
 
• 进化均衡策略是理查德·道金斯Richard Dawkins1976年最畅销的著作《自私的基因The Selfish Gene》中用来分析进化的主要元素。
 
 
* The ESS was first used in the [[social sciences]] by [[Robert Axelrod]] in his 1984 book ''[[The Evolution of Cooperation]]''.  Since then, it has been widely used in the social sciences, including [[anthropology]], [[economics]], [[philosophy]], and [[political science]].
 
• 由罗伯特·阿克塞尔罗德Robert Axelrod在1984年创作出版的《合作的进化The Evolution of Cooperation》一书中首次将进化均衡策略用于社会科学领域。从那时起,它就被广泛用于社会科学,包括人类学、经济学、哲学和政治学。
 
 
* In the social sciences, the primary interest is not in an ESS as the end of [[biological]] evolution, but as an end point in [[cultural evolution]] or individual learning.<ref name="AlexanderSEP">{{cite encyclopedia |url=http://plato.stanford.edu/entries/game-evolutionary/ |title=Evolutionary Game Theory |accessdate=31 August 2007 |last1=Alexander|first1=Jason McKenzie |date=23 May 2003 |encyclopedia=Stanford Encyclopedia of Philosophy}}</ref>
 
• 在社会科学中,人们最主要的兴趣不是将进化均衡策略作为生物进化的终点,而是将其作为文化进化或个体学习的终点。
 
 
* In [[evolutionary psychology]], ESS is used primarily as a model for [[human evolution|human biological evolution]].
 
• 在进化心理学中,进化均衡策略主要被用作人类生物学进化的模型。
 
 
== Motivation 策略的假设与动机==
 
 
The [[Nash equilibrium]] is the traditional [[solution concept]] in [[game theory]]. It depends on the cognitive abilities of the players. It is assumed that players are aware of the [[extensive form|structure of the game]] and consciously try to predict the [[Move (game theory)|moves]] of their opponents and to maximize their own [[Payoff (game theory)|payoffs]]. In addition, it is presumed that all the players know this (see [[common knowledge (logic)|common knowledge]]).  These assumptions are then used to explain why players choose Nash equilibrium strategies.
 
 
The Nash equilibrium is the traditional solution concept in game theory. It depends on the cognitive abilities of the players. It is assumed that players are aware of the structure of the game and consciously try to predict the moves of their opponents and to maximize their own payoffs. In addition, it is presumed that all the players know this (see common knowledge).  These assumptions are then used to explain why players choose Nash equilibrium strategies.
 
 
在博弈论中,纳什均衡相当于一种传统的解决方案概念,而这依赖于玩家的对它的认知。它假定玩家知道游戏的结构并且会有意识地尝试预测对手的行动以期最大程度地提高自己的收益。另外,纳什均衡也假定所有玩家都知道以下规则(请参阅'''<font color="#ff8000"> 常识性知识Common Knowledge</font>''')。后来这些假设又被用于解释为什么游戏参与者们会选择纳什均衡策略。
 
 
 
 
Evolutionarily stable strategies are motivated entirely differently.  Here, it is presumed that the players' strategies are biologically encoded and [[heritable]].  Individuals have no control over their strategy and need not be aware of the game.  They reproduce and are subject to the forces of [[natural selection]], with the payoffs of the game representing reproductive success (biological [[fitness (biology)|fitness]]). It is imagined that alternative strategies of the game occasionally occur, via a process like [[mutation]]. To be an ESS, a strategy must be resistant to these alternatives.
 
 
Evolutionarily stable strategies are motivated entirely differently.  Here, it is presumed that the players' strategies are biologically encoded and heritable.  Individuals have no control over their strategy and need not be aware of the game.  They reproduce and are subject to the forces of natural selection, with the payoffs of the game representing reproductive success (biological fitness). It is imagined that alternative strategies of the game occasionally occur, via a process like mutation. To be an ESS, a strategy must be resistant to these alternatives.
 
  
 
进化均衡策略的动机则完全不同。在这一语境下玩家的策略被假定为具有生物编码性而且可遗传至下一代。玩家个人并不能控制自己的策略,也无需了解游戏规则。他们繁殖并服从自然选择,而游戏的收益则代表着繁衍成功(生物适应性)。同时可以想象,在繁衍生息过程中,游戏策略偶尔会通过类似基因突变而无计划地发生变异,产生其方案策略。之后他们会通过互相抵制直到出现最优势的策略,即进化均衡策略。
 
进化均衡策略的动机则完全不同。在这一语境下玩家的策略被假定为具有生物编码性而且可遗传至下一代。玩家个人并不能控制自己的策略,也无需了解游戏规则。他们繁殖并服从自然选择,而游戏的收益则代表着繁衍成功(生物适应性)。同时可以想象,在繁衍生息过程中,游戏策略偶尔会通过类似基因突变而无计划地发生变异,产生其方案策略。之后他们会通过互相抵制直到出现最优势的策略,即进化均衡策略。
  
 
 
Given the radically different motivating assumptions, it may come as a surprise that ESSes and Nash equilibria often coincide. In fact, every ESS corresponds to a Nash equilibrium, but some Nash equilibria are not ESSes.
 
 
Given the radically different motivating assumptions, it may come as a surprise that ESSes and Nash equilibria often coincide. In fact, every ESS corresponds to a Nash equilibrium, but some Nash equilibria are not ESSes.
 
  
 
考虑到本质上全然不同的动机假设,进化均衡策略和纳什均衡偶然的一致性令人感到惊讶。实际上,每个进化均衡策略都有对应的纳什均衡,但是某些纳什均衡却不同于进化均衡策略。
 
考虑到本质上全然不同的动机假设,进化均衡策略和纳什均衡偶然的一致性令人感到惊讶。实际上,每个进化均衡策略都有对应的纳什均衡,但是某些纳什均衡却不同于进化均衡策略。
  
== Nash equilibrium 纳什均衡==
 
 
<!--
 
  
 +
==纳什均衡 Nash equilibrium ==
 
<!--
 
<!--
 
+
{{Payoff matrix | Name = 伤害你的邻居 Harm thy neighbor
<!--
 
 
 
{{Payoff matrix | Name = Harm thy neighbor
 
 
 
{{Payoff matrix | Name = Harm thy neighbor
 
 
 
{支付矩阵 | 名称 = 伤害你的邻居
 
 
 
 
                 | 2L = A    | 2R = B    |
 
                 | 2L = A    | 2R = B    |
 
                | 2L = A    | 2R = B    |
 
 
2 l = a | 2 r = b |
 
 
 
1U = A          | UL = 2, 2  | UR = 1, 2 |
 
1U = A          | UL = 2, 2  | UR = 1, 2 |
 
1U = A          | UL = 2, 2  | UR = 1, 2 |
 
 
1 u = a | UL = 2,2 | UR = 1,2 |
 
 
1D = B          | DL = 2, 1  | DR = 2, 2 }}
 
 
 
1D = B          | DL = 2, 1  | DR = 2, 2 }}
 
1D = B          | DL = 2, 1  | DR = 2, 2 }}
 
1 d = b | DL = 2,1 | DR = 2,2}
 
 
 
-->
 
-->
  
-->
+
进化均衡策略是纳什均衡的改进式(关于两者的对比见下一节)。在纳什均衡中,如果所有参与者都采用各自的策略方案,且都无法通过改用任何其他策略以获益,那么在这两人的游戏中,我们将此看作一个策略对。令E(''S'',''T'')表示策略''S''对策略''T''的收益。当且仅当双方都成立且所有''T''''S''时,策略对(''S'', ''S'') 为该两人游戏中的纳什均衡:
 
 
-->
 
 
 
 
 
An ESS is a [[solution concept|refined]] or modified form of a [[Nash equilibrium]]. (See the next section for examples which contrast the two.) In a Nash equilibrium, if all players adopt their respective parts, no player can ''benefit'' by switching to any alternative strategy. In a two player game, it is a strategy pair. Let E(''S'',''T'') represent the payoff for playing strategy ''S'' against strategy ''T''.  The strategy pair (''S'', ''S'') is a Nash equilibrium in a two player game if and only if this is true for both players and for all ''T''''S'':
 
 
 
E(S,S) ≥ E(T,S)
 
  
An ESS is a refined or modified form of a Nash equilibrium. (See the next section for examples which contrast the two.) In a Nash equilibrium, if all players adopt their respective parts, no player can benefit by switching to any alternative strategy. In a two player game, it is a strategy pair. Let E(S,T) represent the payoff for playing strategy S against strategy T.  The strategy pair (S, S) is a Nash equilibrium in a two player game if and only if this is true for both players and for all T≠S:
 
  
 
E(S,S) ≥ E(T,S)
 
E(S,S) ≥ E(T,S)
  
进化均衡策略是纳什均衡的改进式(关于两者的对比见下一节)。在纳什均衡中,如果所有参与者都采用各自的策略方案,且都无法通过改用任何其他策略以获益,那么在这两人的游戏中,我们将此看作一个策略对。令E(S,T)表示策略S对策略T的收益。当且仅当双方都成立且所有T≠S时,策略对(S,S)为该两人游戏中的纳什均衡:
 
E(S,S) ≥ E(T,S)
 
  
 +
在这个定义中,策略''T'' 可以成为''S'' 的中性替代(即最后得分相同,但这已经是最好的结果了)。
  
  
In this definition, strategy ''T'' can be a neutral alternative to ''S'' (scoring equally well, but not better).
+
即使采用 ''T'' 后其得分相等,纳什均衡也被认为是稳定的,当然前提是假设不存在长期动机去鼓励玩家采用 ''T'' 而不是 ''S''
  
In this definition, strategy T can be a neutral alternative to S (scoring equally well, but not better).
 
  
在这个定义中,策略T可以成为S的中性替代(即最后得分相同,但这已经是最好的结果了)。
+
Smith和Price为策略 ''S'' 指定了两个条件,使其成为进化均衡策略,对于所有的 ''T''≠''S'',两个选其一:
  
 +
1. E(S,S) > E(T,S)
  
 +
2. E(S,S) = E(T,S) 且 E(S,T) > E(T,T)
  
A Nash equilibrium is presumed to be stable even if ''T'' scores equally, on the assumption that there is no long-term incentive for players to adopt ''T'' instead of ''S''.  This fact represents the point of departure of the ESS.
 
  
A Nash equilibrium is presumed to be stable even if T scores equally, on the assumption that there is no long-term incentive for players to adopt T instead of S. This fact represents the point of departure of the ESS.
+
第一个条件有时称为'''严格纳什均衡'''。<ref>{{cite journal |doi=10.1007/BF01737572 |author=Harsanyi, J |authorlink=John Harsanyi |title=Oddness of the number of equilibrium points: a new proof |journal=Int. J. Game Theory |volume=2 |issue=1 |pages=235–50 |year=1973 }}</ref> 而第二个有时称为'''梅纳德·史密斯第二条件''',它意味着,尽管策略 ''T'' 在对抗策略 ''S'' 时收益不变,但继续使用策略 ''S'' 的玩家在对抗策略T时收益具有明显优势。
  
即使采用T后其得分相等,纳什均衡也被认为是稳定的,当然前提是假设不存在长期动机去鼓励玩家采用T而不是S。
 
  
 +
后来伯恩哈德·托马斯 Bernhard Thomas在他的论文《On evolutionarily stable sets》中提出了更大胆的定义。<ref name="Thomas85">{{cite journal |author=Thomas, B. |title=On evolutionarily stable sets |journal=J. Math. Biology |volume=22 |pages=105–115 |year=1985 |doi=10.1007/bf00276549}}</ref> 它不同于纳什均衡概念在进化均衡策略中的作用。根据上面第一个定义中给出的术语,此处要求对所有 ''T''≠''S'':
  
 +
1. E(S,S) ≥ E(T,S),并且
  
[[John Maynard Smith|Maynard Smith]] and [[George R. Price|Price]]<ref name="JMSandP73"/> specify two conditions for a strategy ''S'' to be an ESS.  For all ''T''≠''S'', either
 
1. E(S,S) > E(T,S), or
 
2. E(S,S) = E(T,S) and E(S,T) > E(T,T)
 
 
Maynard Smith and Price specify two conditions for a strategy S to be an ESS.  For all T≠S, either
 
1. E(S,S) > E(T,S), or
 
2. E(S,S) = E(T,S) and E(S,T) > E(T,T)
 
 
梅纳德·史密斯和普莱斯为策略S指定了两个条件,使其成为进化均衡策略,对于所有的T≠S,两个选其一:
 
1. E(S,S) > E(T,S), 或者
 
2. E(S,S) = E(T,S) and E(S,T) > E(T,T)
 
 
 
 
The first condition is sometimes called a ''strict'' Nash equilibrium.<ref>{{cite journal |doi=10.1007/BF01737572 |author=Harsanyi, J |authorlink=John Harsanyi |title=Oddness of the number of equilibrium points: a new proof |journal=Int. J. Game Theory |volume=2 |issue=1 |pages=235–50 |year=1973 }}</ref> The second is sometimes called "Maynard Smith's second condition". The second condition means that although strategy ''T'' is neutral with respect to the payoff against strategy ''S'', the population of players who continue to play strategy ''S'' has an advantage when playing against ''T''.
 
 
The first condition is sometimes called a strict Nash equilibrium. The second is sometimes called "Maynard Smith's second condition". The second condition means that although strategy T is neutral with respect to the payoff against strategy S, the population of players who continue to play strategy S has an advantage when playing against T.
 
 
第一个条件有时称为严格的纳什均衡。而第二个有时称为“梅纳德·史密斯的第二条件”,它意味着,尽管策略T在对抗策略S时收益不变,但继续使用策略S的玩家在对抗策略T时收益具有明显优势。
 
 
 
 
There is also an alternative, stronger definition of ESS, due to Thomas.<ref name="Thomas85">{{cite journal |author=Thomas, B. |title=On evolutionarily stable sets |journal=J. Math. Biology |volume=22 |pages=105–115 |year=1985 |doi=10.1007/bf00276549}}</ref>  This places a different emphasis on the role of the Nash equilibrium concept in the ESS concept.  Following the terminology given in the first definition above, this definition requires that for all ''T''≠''S''
 
1. E(S,S) ≥ E(T,S),and
 
2. E(S,T) > E(T,T),
 
 
There is also an alternative, stronger definition of ESS, due to Thomas.  This places a different emphasis on the role of the Nash equilibrium concept in the ESS concept.  Following the terminology given in the first definition above, this definition requires that for all T≠S
 
1. E(S,S) ≥ E(T,S),and
 
2. E(S,T) > E(T,T),
 
 
后来伯恩哈德·托马斯Bernhard Thomas在他的论文《On evolutionarily stable sets》中提出了更大胆的定义。它不同于纳什均衡概念在进化均衡策略中的作用。根据上面第一个定义中给出的术语,此处要求对所有T≠S:
 
1. E(S,S) ≥ E(T,S),并且
 
 
2. E(S,T) > E(T,T),
 
2. E(S,T) > E(T,T),
  
  
 
+
在这两个公式中,第一个指定了该策略采取纳什均衡,而第二则是指定满足梅纳德·史密斯第二条件。请注意,这两个定义并不完全相等:例如,在接下来的协调游戏中的每个独立策略都是第一个定义的进化均衡策略,而非第二个。
In this formulation, the first condition specifies that the strategy is a Nash equilibrium, and the second specifies that Maynard Smith's second condition is met. Note that the two definitions are not precisely equivalent: for example, each pure strategy in the coordination game below is an ESS by the first definition but not the second.
 
 
 
In this formulation, the first condition specifies that the strategy is a Nash equilibrium, and the second specifies that Maynard Smith's second condition is met. Note that the two definitions are not precisely equivalent: for example, each pure strategy in the coordination game below is an ESS by the first definition but not the second.
 
 
 
在这两个公式中,第一个指定了该策略采取纳什均衡,而第二则是指定满足梅纳德·史密斯的第二个条件。请注意,这两个定义并不完全相等:例如,在接下来的协调游戏中的每个独立策略都是第一个定义的进化均衡策略,而非第二个。
 
  
  
 +
换句话说,此定义还可以这么理解,当两个玩家都使用策略 ''S'' 时:第一个玩家的收益要高于(或等于)当第一个玩家更改为策略T而第二个玩家保持策略S时的收益;当第一个玩家的对手将策略更改为T时,第一个玩家自身的收益要大于他们两者都更改为策略T。
  
In words, this definition looks like this: The payoff of the first player when both players play strategy S is higher than (or equal to) the payoff of the first player when he changes to another strategy T and the second player keeps his strategy S  ''and'' the payoff of the first player when only his opponent changes his strategy to T is higher than his payoff in case that both of players change their strategies to T.
 
  
In words, this definition looks like this: The payoff of the first player when both players play strategy S is higher than (or equal to) the payoff of the first player when he changes to another strategy T and the second player keeps his strategy S  and the payoff of the first player when only his opponent changes his strategy to T is higher than his payoff in case that both of players change their strategies to T.
+
这种表述更清楚地强调了纳什均衡条件在进化均衡策略中的作用。同时还考虑到对相关概念进行自然定义,例如'''<font color="#ff8000"> 弱进化均衡策略 Weak evolutionarily stable strategy</font>'''或'''<font color="#ff8000"> 进化均衡集合 Evolutionarily stable set</font>'''。<ref name="Thomas85"/>
  
换句话说,此定义还可以这么理解,当两个玩家都使用策略S时:1. 第一个玩家的收益要高于(或等于)当第一个玩家更改为策略T而第二个玩家保持策略S时的收益。2. 当第一个玩家的对手将策略更改为T时,第一个玩家自身的收益要大于他们两者都更改为策略T。
 
  
  
 
+
===纳什均衡与进化均衡策略之间差异的示例===
This formulation more clearly highlights the role of the Nash equilibrium condition in the ESS. It also allows for a natural definition of related concepts such as a [[weak ESS]] or an [[evolutionarily stable set]].<ref name="Thomas85"/>
 
 
 
This formulation more clearly highlights the role of the Nash equilibrium condition in the ESS. It also allows for a natural definition of related concepts such as a weak ESS or an evolutionarily stable set.
 
 
 
这种表述更清楚地强调了纳什均衡条件在进化均衡策略中的作用。同时还考虑到对相关概念进行自然定义,例如'''<font color="#ff8000"> 弱进化均衡策略Weak evolutionarily stable strategy</font>'''或'''<font color="#ff8000"> 进化均衡集合Evolutionarily stable set</font>'''。
 
 
 
 
 
 
 
=== Examples of differences between Nash equilibria and ESSes 纳什均衡与进化均衡策略之间差异的示例 ===
 
  
 
{| class="wikitable"
 
{| class="wikitable"
第293行: 第114行:
 
|}
 
|}
  
 +
在大多数简单的游戏中,进化均衡策略和纳什均衡完全重合。例如,在游戏'''<font color="#ff8000"> 《囚徒困境 Prisoner's Dilemma》</font>'''中,只有一个纳什均衡,其策略(叛变 Defect)也是一种进化均衡策略。
  
  
In most simple games, the ESSes and Nash equilibria coincide perfectly.  For instance, in the [[prisoner's dilemma]] there is only one Nash equilibrium, and its strategy (''Defect'') is also an ESS.
+
还有一些游戏可能具有非进化均衡策略的纳什均衡。例如,在游戏'''<font color="#ff8000"> 《以邻为壑 Harm thy neighbor》</font>'''中(此处显示为回报矩阵),(''A'', ''A'')(''B'', ''B'')都是纳什均衡,因为玩家无法通过选择放弃任一个来做得更好。但是,只有B是进化均衡策略(也是强纳什)。A不是进化均衡策略,因此B可以中立地入侵A策略的群体并占据优势地位,因为B对B的得分要比A对B的得分高。由于E(''A'', ''A'') = E(''B'', ''A''),因此可以通过梅纳德·史密斯的第二个条件来捕获此动态,但是 E(''A'',''B'') > E(''B'',''B'')并非如此。
 
 
In most simple games, the ESSes and Nash equilibria coincide perfectly.  For instance, in the prisoner's dilemma there is only one Nash equilibrium, and its strategy (Defect) is also an ESS.
 
 
 
在大多数简单的游戏中,进化均衡策略和纳什均衡完全重合。例如,在游戏'''<font color="#ff8000"> 《囚徒困境Prisoner's Dilemma》</font>'''中,只有一个纳什均衡,其策略(叛变)也是一种进化均衡策略。
 
 
 
 
 
 
 
Some games may have Nash equilibria that are not ESSes. For example, in [[harm thy neighbor]] (whose payoff matrix is shown here) both (''A'', ''A'') and (''B'', ''B'') are Nash equilibria, since players cannot do better by switching away from either.  However, only ''B'' is an ESS (and a strong Nash). ''A'' is not an ESS, so ''B'' can neutrally invade a population of ''A'' strategists and predominate, because ''B'' scores higher against ''B'' than ''A'' does against ''B''.  This dynamic is captured by Maynard Smith's second condition, since E(''A'', ''A'') = E(''B'', ''A''), but it is not the case that E(''A'',''B'') > E(''B'',''B'').
 
 
 
Some games may have Nash equilibria that are not ESSes. For example, in harm thy neighbor (whose payoff matrix is shown here) both (A, A) and (B, B) are Nash equilibria, since players cannot do better by switching away from either.  However, only B is an ESS (and a strong Nash). A is not an ESS, so B can neutrally invade a population of A strategists and predominate, because B scores higher against B than A does against B.  This dynamic is captured by Maynard Smith's second condition, since E(A, A) = E(B, A), but it is not the case that E(A,B) > E(B,B).
 
 
 
还有一些游戏可能具有非进化均衡策略的纳什均衡。例如,在游戏'''<font color="#ff8000"> 《以邻为壑Harm thy neighbor》</font>'''中(此处显示为回报矩阵),(A,A)和(B,B)都是纳什均衡,因为玩家无法通过选择放弃任一个来做得更好。但是,只有B是进化均衡策略(也是强纳什)。A不是进化均衡策略,因此B可以中立地入侵A策略的群体并占据优势地位,因为B对B的得分要比A对B的得分高。由于E(A,A)= E(B,A),因此可以通过梅纳德·史密斯的第二个条件来捕获此动态,但是E(A,B)> E(B,B)并非如此。
 
  
  
第334行: 第144行:
  
  
Nash equilibria with equally scoring alternatives can be ESSes.  For example, in the game ''Harm everyone'', ''C'' is an ESS because it satisfies Maynard Smith's second condition. ''D'' strategists may temporarily invade a population of ''C'' strategists by scoring equally well against ''C'', but they pay a price when they begin to play against each other; ''C'' scores better against ''D'' than does ''D''.  So here although E(''C'', ''C'') = E(''D'', ''C''), it is also the case that E(''C'',''D'') > E(''D'',''D'').  As a result, ''C'' is an ESS.
+
纳什均衡以及同等评分的策略都可以是进化均衡策略。例如,在游戏'''<font color="#ff8000"> 《伤害大家 Harm everyone》</font>'''中, ''C'' 是进化均衡策略,因为它满足了梅纳德·史密斯第二条件。 ''D'' 策略可以暂时入侵C策略群体,因为D策略可以获得和 ''C'' 策略一样的评分。但是当他们开始互相对抗时,他们会付出一定的代价;''C'' ''D'' 的得分比D对D的得分高。因此,尽管 E(''C'', ''C'') = E(''D'', ''C''),但 E(''C'',''D'') > E(''D'',''D'')。因此,最后C是最终进化均衡策略。
  
Nash equilibria with equally scoring alternatives can be ESSes.  For example, in the game Harm everyone, C is an ESS because it satisfies Maynard Smith's second condition. D strategists may temporarily invade a population of C strategists by scoring equally well against C, but they pay a price when they begin to play against each other; C scores better against D than does D.  So here although E(C, C) = E(D, C), it is also the case that E(C,D) > E(D,D).  As a result, C is an ESS.
 
  
纳什均衡以及同等评分的策略都可以是进化均衡策略。例如,在游戏'''<font color="#ff8000"> 《伤害大家Harm everyone》</font>'''中,C是进化均衡策略,因为它满足了梅纳德·史密斯的第二条件。D策略可以暂时入侵C策略群体,因为D策略可以获得和C策略一样的评分。但是当他们开始互相对抗时,他们会付出一定的代价;C对D的得分比D对D的得分高。因此,尽管E(C,C)=E(D,C),但E(C,D)> E(D,D)。因此,最后C是最终进化均衡策略。
+
还有一些游戏即使具有纯粹的纳什均衡策略,但可能它们都不是进化均衡策略。比如游戏'''<font color="#ff8000"> 《小鸡博弈 The Game of Chicken》</font>''',该游戏中有两种纯粹的纳什均衡策略(转身离开Swerve,留下Stay)和(留下Stay,转身离开Swerve)。但是,在<font color="#ff8000"无关联不对称 Uncorrelated Asymmetry</font>缺失的情况下,Swerve和Stay都不是进化均衡策略。此时存在第三种纳什均衡,它属于混合策略并且是该游戏的进化均衡策略(详情请参见'''<font color="#ff8000"> 《[[鹰鸽博弈 Hawk-dove]]》</font>'''游戏和'''<font color="#ff8000"> 《[[最佳响应 Best Response]]》</font>''')。
  
 
 
Even if a game has pure strategy Nash equilibria, it might be that none of those pure strategies are ESS. Consider the [[Chicken (game)|Game of chicken]].  There are two pure strategy Nash equilibria in this game (''Swerve'', ''Stay'') and (''Stay'', ''Swerve''). However, in the absence of an [[uncorrelated asymmetry]], neither ''Swerve'' nor ''Stay'' are ESSes. There is a third Nash equilibrium, a [[mixed strategy]] which is an ESS for this game (see [[Chicken (game)|Hawk-dove game]] and [[Best response]] for explanation).
 
 
Even if a game has pure strategy Nash equilibria, it might be that none of those pure strategies are ESS. Consider the Game of chicken.  There are two pure strategy Nash equilibria in this game (Swerve, Stay) and (Stay, Swerve). However, in the absence of an uncorrelated asymmetry, neither Swerve nor Stay are ESSes. There is a third Nash equilibrium, a mixed strategy which is an ESS for this game (see Hawk-dove game and Best response for explanation).
 
 
还有一些游戏即使具有纯粹的纳什均衡策略,但可能它们都不是进化均衡策略。比如游戏'''<font color="#ff8000"> 《小鸡博弈The Game of Chicken》</font>''',该游戏中有两种纯粹的纳什均衡策略(转身离开Swerve,留下Stay)和(留下Stay,转身离开Swerve)。但是,在无关联不对称Uncorrelated Asymmetry缺失的情况下,Swerve和Stay都不是进化均衡策略。此时存在第三种纳什均衡,它属于混合策略并且是该游戏的进化均衡策略(详情请参见'''<font color="#ff8000"> 《鹰鸽博弈Hawk-dove》</font>'''游戏和'''<font color="#ff8000"> 《最佳响应Best Response》</font>''')。
 
 
 
 
This last example points to an important difference between Nash equilibria and ESS.  Nash equilibria are defined on ''strategy sets'' (a specification of a strategy for each player), while ESS are defined in terms of strategies themselves.  The equilibria defined by ESS must always be [[Symmetric equilibrium|symmetric]], and thus have fewer equilibrium points.
 
 
This last example points to an important difference between Nash equilibria and ESS.  Nash equilibria are defined on strategy sets (a specification of a strategy for each player), while ESS are defined in terms of strategies themselves.  The equilibria defined by ESS must always be symmetric, and thus have fewer equilibrium points.
 
  
 
最后一个示例指出了纳什均衡与进化均衡策略之间的重要区别。纳什均衡是在策略集(每个参与者的策略规范)上定义的,而进化均衡策略是根据策略本身定义的。进化均衡策略定义的平衡必须始终是对称的,因此其平衡点更少。
 
最后一个示例指出了纳什均衡与进化均衡策略之间的重要区别。纳什均衡是在策略集(每个参与者的策略规范)上定义的,而进化均衡策略是根据策略本身定义的。进化均衡策略定义的平衡必须始终是对称的,因此其平衡点更少。
  
== Vs. evolutionarily stable state 与进化稳定状态的比较
 
In population biology, the two concepts of an ''evolutionarily stable strategy'' (ESS) and an ''[[evolutionarily stable state]]'' are closely linked but describe different situations.
 
 
In population biology, the two concepts of an evolutionarily stable strategy (ESS) and an evolutionarily stable state are closely linked but describe different situations.
 
  
 +
==与进化稳定状态的比较==
 
在种群生物学中,进化均衡策略和'''<font color="#ff8000"> 进化稳定状态Evolutionarily Stable State</font>'''这两个概念密切相关,但却描述了不同的情况。
 
在种群生物学中,进化均衡策略和'''<font color="#ff8000"> 进化稳定状态Evolutionarily Stable State</font>'''这两个概念密切相关,但却描述了不同的情况。
  
 
 
In an evolutionarily stable ''strategy,'' if all the members of a population adopt it, no mutant strategy can invade.<ref name="JMS82"/> Once virtually all members of the population use this strategy, there is no 'rational' alternative. ESS is part of classical [[game theory]].
 
 
In an evolutionarily stable strategy, if all the members of a population adopt it, no mutant strategy can invade. Once virtually all members of the population use this strategy, there is no 'rational' alternative. ESS is part of classical game theory.
 
  
 
在进化均衡策略中,如果所有种群的成员都采用它,那么任何突变策略都无法入侵。无形中只要所有成员都使用了这种策略,就不再有“理性”的选择。进化均衡策略是经典博弈论的一部分。
 
在进化均衡策略中,如果所有种群的成员都采用它,那么任何突变策略都无法入侵。无形中只要所有成员都使用了这种策略,就不再有“理性”的选择。进化均衡策略是经典博弈论的一部分。
  
  
 
+
在进化稳定状态下,如果干扰不太大的话,即使受到冲击,种群的基因组成通过策略选择同样能够进行恢复。而这就是是种群的动态特性,即使受到初始状态的干扰,它们的状态会通过使用策略或混合策略组进行恢复。它是'''<font color="#ff8000"> 群体遗传学Population Genetics</font>''','''<font color="#ff8000"> 动力学系统Dynamical System</font>'''或'''<font color="#ff8000"> 演化博弈论Evolutionary Game Theory</font>'''的一部分。这现在被称为'''<font color="#ff8000"> 收敛稳定性Convergent Stability</font>'''<ref>{{Cite journal |last1=Apaloo |first1=J. |last2=Brown |first2=J. S. |last3=Vincent |first3=T. L. |date=2009 |title=Evolutionary game theory: ESS, convergence stability, and NIS |url=http://www.evolutionary-ecology.com/abstracts/v11/2445.html |journal=Evolutionary Ecology Research |volume=11 |pages=489–515 |access-date=2018-01-10 |archive-url=https://web.archive.org/web/20170809115301/http://www.evolutionary-ecology.com/abstracts/v11/2445.html |archive-date=2017-08-09 |url-status=dead }}</ref>
In an evolutionarily stable ''state,'' a population's genetic composition is restored by selection after a disturbance, if the disturbance is not too large. An evolutionarily stable state is a dynamic property of a population that returns to using a strategy, or mix of strategies, if it is perturbed from that initial state. It is part of [[population genetics]], [[dynamical system]], or [[evolutionary game theory]]. This is now called convergent stability.<ref>{{Cite journal |last1=Apaloo |first1=J. |last2=Brown |first2=J. S. |last3=Vincent |first3=T. L. |date=2009 |title=Evolutionary game theory: ESS, convergence stability, and NIS |url=http://www.evolutionary-ecology.com/abstracts/v11/2445.html |journal=Evolutionary Ecology Research |volume=11 |pages=489–515 |access-date=2018-01-10 |archive-url=https://web.archive.org/web/20170809115301/http://www.evolutionary-ecology.com/abstracts/v11/2445.html |archive-date=2017-08-09 |url-status=dead }}</ref>
 
 
 
In an evolutionarily stable state, a population's genetic composition is restored by selection after a disturbance, if the disturbance is not too large. An evolutionarily stable state is a dynamic property of a population that returns to using a strategy, or mix of strategies, if it is perturbed from that initial state. It is part of population genetics, dynamical system, or evolutionary game theory. This is now called convergent stability.
 
 
 
在进化稳定状态下,如果干扰不太大的话,即使受到冲击,种群的基因组成通过策略选择同样能够进行恢复。而这就是是种群的动态特性,即使受到初始状态的干扰,它们的状态会通过使用策略或混合策略组进行恢复。它是'''<font color="#ff8000"> 群体遗传学Population Genetics</font>''','''<font color="#ff8000"> 动力学系统Dynamical System</font>'''或'''<font color="#ff8000"> 演化博弈论Evolutionary Game Theory</font>'''的一部分。这现在被称为'''<font color="#ff8000"> 收敛稳定性Convergent Stability</font>'''。
 
  
  
 +
B. Thomas将“进化均衡策略”这一术语应用于可混合的独立策略,并将“进化稳定种群状态”应用于采取纯策略的混合种群,该应用在形式上可能等同于混合的“进化均衡策略”。<ref>{{cite journal |doi=10.1016/0040-5809(84)90023-6 |author=Thomas, B. |title=Evolutionary stability: states and strategies |journal=Theor. Popul. Biol. |volume=26 |issue=1 |pages=49–67 |year=1984 }}</ref>
  
B. Thomas (1984) applies the term ESS to an individual strategy which may be mixed, and evolutionarily stable population state to a population mixture of pure strategies which may be formally equivalent to the mixed ESS.<ref>{{cite journal |doi=10.1016/0040-5809(84)90023-6 |author=Thomas, B. |title=Evolutionary stability: states and strategies |journal=Theor. Popul. Biol. |volume=26 |issue=1 |pages=49–67 |year=1984 }}</ref>
 
 
B. Thomas (1984) applies the term ESS to an individual strategy which may be mixed, and evolutionarily stable population state to a population mixture of pure strategies which may be formally equivalent to the mixed ESS.
 
 
托马斯B. Thomas(1984)将“进化均衡策略”这一术语应用于可混合的独立策略,并将“进化稳定种群状态”应用于采取纯策略的混合种群,该应用在形式上可能等同于混合的“进化均衡策略”。
 
 
 
 
Whether a population is evolutionarily stable does not relate to its genetic diversity: it can be genetically monomorphic or [[Polymorphism (biology)|polymorphic]].<ref name="JMS82"/>
 
 
Whether a population is evolutionarily stable does not relate to its genetic diversity: it can be genetically monomorphic or polymorphic.
 
  
 
种群是否在进化过程中处于稳定状态与它的基因多样性无关,因为在遗传上它可以是单态或多态的。
 
种群是否在进化过程中处于稳定状态与它的基因多样性无关,因为在遗传上它可以是单态或多态的。
  
== Stochastic ESS 随机的进化均衡策略 ==
 
 
In the classic definition of an ESS, no mutant strategy can invade. In finite populations, any mutant could in principle invade, albeit at low probability, implying that no ESS can exist. In an infinite population, an ESS can instead be defined as a strategy which, should it become invaded by a new mutant strategy with probability p, would be able to counterinvade from a single starting individual with probability >p, as illustrated by the evolution of [[Bet-hedging (biology)|bet-hedging]].<ref>{{cite journal |last=King |first=Oliver D. |author2=Masel, Joanna |author2link=Joanna Masel |title=The evolution of bet-hedging adaptations to rare scenarios |journal=Theoretical Population Biology|date=1 December 2007 |volume=72 |issue=4 |pages=560–575 |doi=10.1016/j.tpb.2007.08.006 |pmid=17915273 |pmc=2118055}}</ref>
 
  
In the classic definition of an ESS, no mutant strategy can invade. In finite populations, any mutant could in principle invade, albeit at low probability, implying that no ESS can exist. In an infinite population, an ESS can instead be defined as a strategy which, should it become invaded by a new mutant strategy with probability p, would be able to counterinvade from a single starting individual with probability >p, as illustrated by the evolution of bet-hedging.
+
==随机进化均衡策略 ==
  
在进化均衡策略的经典定义中,没有任何突变策略可以入侵。然而在有限种群中,尽管可能性很小,但是任意一种突变体原则上是可能入侵的,这就意味着在这个种群中绝对没有进化均衡策略的存在。如果在无限种群中,存在一个概率为P的新突变策略入侵,此时,正如对冲交易的进化过程所描述的那样,进化均衡策略就被认为是具有概率大于p的策略方案且开始反击最初入侵的新突变策略个体。
+
在进化均衡策略的经典定义中,没有任何突变策略可以入侵。然而在有限种群中,尽管可能性很小,但是任意一种突变体原则上是可能入侵的,这就意味着在这个种群中绝对没有进化均衡策略的存在。如果在无限种群中,存在一个概率为P的新突变策略入侵,此时,正如对冲交易的进化过程所描述的那样,进化均衡策略就被认为是具有概率大于p的策略方案且开始反击最初入侵的新突变策略个体。<ref>{{cite journal |last=King |first=Oliver D. |author2=Masel, Joanna |author2link=Joanna Masel |title=The evolution of bet-hedging adaptations to rare scenarios |journal=Theoretical Population Biology|date=1 December 2007 |volume=72 |issue=4 |pages=560–575 |doi=10.1016/j.tpb.2007.08.006 |pmid=17915273 |pmc=2118055}}</ref>
  
== Prisoner's dilemma 囚徒困境 ==
 
  
{{Payoff matrix | Name = Prisoner's Dilemma
+
==囚徒困境  Prisoner's dilemma ==
  
 
{{Payoff matrix | Name = Prisoner's Dilemma
 
{{Payoff matrix | Name = Prisoner's Dilemma
 
{{支付矩阵 | 名称 = 囚徒困境
 
 
                | 2L = Cooperate  | 2R = Defect    |
 
 
 
                 | 2L = Cooperate  | 2R = Defect    |
 
                 | 2L = Cooperate  | 2R = Defect    |
 
2 l = 合作 | 2 r = 缺陷 |
 
 
1U = Cooperate  | UL = 3, 3      | UR = 1, 4      |
 
 
1U = Cooperate  | UL = 3, 3      | UR = 1, 4      |
 
 
 
1U = Cooperate  | UL = 3, 3      | UR = 1, 4      |
 
1U = Cooperate  | UL = 3, 3      | UR = 1, 4      |
 
 
1D = Defect    | DL = 4, 1      | DR = 2, 2      }}
 
1D = Defect    | DL = 4, 1      | DR = 2, 2      }}
 
1D = Defect    | DL = 4, 1      | DR = 2, 2      }}
 
 
1 d = 缺陷 | DL = 4,1 | DR = 2,2}
 
 
 
 
A common model of [[altruism]] and social cooperation is the [[Prisoner's dilemma]].  Here a group of players would collectively be better off if they could play ''Cooperate'', but since ''Defect'' fares better each individual player has an incentive to play ''Defect''.  One solution to this problem is to introduce the possibility of retaliation by having individuals play the game repeatedly against the same player.  In the so-called ''[[repeated game|iterated]]'' Prisoner's dilemma, the same two individuals play the prisoner's dilemma over and over.  While the Prisoner's dilemma has only two strategies (''Cooperate'' and ''Defect''), the iterated Prisoner's dilemma has a huge number of possible strategies.  Since an individual can have different contingency plan for each history and the game may be repeated an indefinite number of times, there may in fact be an infinite number of such contingency plans.
 
 
A common model of altruism and social cooperation is the Prisoner's dilemma.  Here a group of players would collectively be better off if they could play Cooperate, but since Defect fares better each individual player has an incentive to play Defect.  One solution to this problem is to introduce the possibility of retaliation by having individuals play the game repeatedly against the same player.  In the so-called iterated Prisoner's dilemma, the same two individuals play the prisoner's dilemma over and over.  While the Prisoner's dilemma has only two strategies (Cooperate and Defect), the iterated Prisoner's dilemma has a huge number of possible strategies.  Since an individual can have different contingency plan for each history and the game may be repeated an indefinite number of times, there may in fact be an infinite number of such contingency plans.
 
  
 
利他主义和社会合作的普遍模式就是囚徒困境。在这里,如果一群玩家选择“合作”,那么他们这个集体就会生活的更好,但是由于“背叛”为个人带来的利益更大,因此每个玩家都有动机去选择“背叛”。解决该问题的一个可能方案是通过让个体反复与同一玩家来对战,由此引入报复机制。在所谓的囚徒困境迭代过程中,相同的两个人一遍又一遍地扮演着他们的角色。尽管囚犯的困境只有两种策略(合作和背叛),但迭代的囚徒困境游戏却具有大量可能的策略。由于个体对于每个历史可以具有不同的应急计划,并且游戏可以无限次重复,因此实际上可能有无限个此类应急计划。
 
利他主义和社会合作的普遍模式就是囚徒困境。在这里,如果一群玩家选择“合作”,那么他们这个集体就会生活的更好,但是由于“背叛”为个人带来的利益更大,因此每个玩家都有动机去选择“背叛”。解决该问题的一个可能方案是通过让个体反复与同一玩家来对战,由此引入报复机制。在所谓的囚徒困境迭代过程中,相同的两个人一遍又一遍地扮演着他们的角色。尽管囚犯的困境只有两种策略(合作和背叛),但迭代的囚徒困境游戏却具有大量可能的策略。由于个体对于每个历史可以具有不同的应急计划,并且游戏可以无限次重复,因此实际上可能有无限个此类应急计划。
 
  
  
第443行: 第188行:
 
Three simple contingency plans which have received substantial attention are Always Defect, Always Cooperate, and Tit for Tat.  The first two strategies do the same thing regardless of the other player's actions, while the latter responds on the next round by doing what was done to it on the previous round—it responds to Cooperate with Cooperate and Defect with Defect.
 
Three simple contingency plans which have received substantial attention are Always Defect, Always Cooperate, and Tit for Tat.  The first two strategies do the same thing regardless of the other player's actions, while the latter responds on the next round by doing what was done to it on the previous round—it responds to Cooperate with Cooperate and Defect with Defect.
  
其备受关注的三个简单的应急计划是:“始终背叛”,“始终合作”和“针锋相对”。前两种策略会始终执行相同的操作,而不受另一方行为的影响,而后一种策略则是通过上一轮中执行的操作来对下一轮中的对象做出响应,即“合作对合作”或“背叛对背叛”。
+
其备受关注的三个简单的应急计划是:“始终背叛 Always Defect”,“始终合作 Always Cooperate”和“针锋相对 Tit for Tat”。前两种策略会始终执行相同的操作,而不受另一方行为的影响,而后一种策略则是通过上一轮中执行的操作来对下一轮中的对象做出响应,即“合作对合作”或“背叛对背叛”。
  
  
 
+
如果整个种群都选择“针锋相对”,并且出现了一个变异者选择了“始终背叛”,那么“针锋相对”将战胜“始终背叛”。如果该变异者的种群太大,则它所占的百分比将保持很小。因此,就这两种策略而言,“针锋相对”就是一种进化均衡策略。另一方面,“始终背叛”的玩家群体可以稳定地抵御少数“针锋相对”玩家的入侵,但不能抵御大量的入侵。.<ref>{{cite book |author=Axelrod, Robert |authorlink=Robert Axelrod |title=The Evolution of Cooperation |year=1984 |isbn=0-465-02121-2 |title-link=The Evolution of Cooperation }}</ref>  
If the entire population plays ''Tit-for-Tat'' and a mutant arises who plays ''Always Defect'', ''Tit-for-Tat'' will outperform ''Always Defect''.  If the population of the mutant becomes too large — the percentage of the mutant will be kept small. ''Tit for Tat'' is therefore an ESS, ''with respect to '''only''' these two strategies''.  On the other hand, an island of ''Always Defect'' players will be stable against the invasion of a few ''Tit-for-Tat'' players, but not against a large number of them.<ref>{{cite book |author=Axelrod, Robert |authorlink=Robert Axelrod |title=The Evolution of Cooperation |year=1984 |isbn=0-465-02121-2 |title-link=The Evolution of Cooperation }}</ref> If we introduce ''Always Cooperate'', a population of ''Tit-for-Tat'' is no longer an ESS.  Since a population of ''Tit-for-Tat'' players always cooperates, the strategy ''Always Cooperate'' behaves identically in this population.  As a result, a mutant who plays ''Always Cooperate'' will not be eliminated. However, even though a population of ''Always Cooperate'' and ''Tit-for-Tat'' can coexist, if there is a small percentage of the population that is ''Always Defect'', the selective pressure is against ''Always Cooperate'', and in favour of ''Tit-for-Tat''. This is due to the lower payoffs of cooperating than those of defecting in case the opponent defects.
 
 
 
If the entire population plays Tit-for-Tat and a mutant arises who plays Always Defect, Tit-for-Tat will outperform Always Defect.  If the population of the mutant becomes too large — the percentage of the mutant will be kept small. Tit for Tat is therefore an ESS, with respect to only these two strategies.  On the other hand, an island of Always Defect players will be stable against the invasion of a few Tit-for-Tat players, but not against a large number of them.  If we introduce Always Cooperate, a population of Tit-for-Tat is no longer an ESS.  Since a population of Tit-for-Tat players always cooperates, the strategy Always Cooperate behaves identically in this population.  As a result, a mutant who plays Always Cooperate will not be eliminated. However, even though a population of Always Cooperate and Tit-for-Tat can coexist, if there is a small percentage of the population that is Always Defect, the selective pressure is against Always Cooperate, and in favour of Tit-for-Tat. This is due to the lower payoffs of cooperating than those of defecting in case the opponent defects.
 
 
 
如果整个种群都选择“针锋相对”,并且出现了一个变异者选择了“始终背叛”,那么“针锋相对”将战胜“始终背叛”。如果该变异者的种群太大,则它所占的百分比将保持很小。因此,就这两种策略而言,“针锋相对”就是一种进化均衡策略。另一方面,“始终背叛”的玩家群体可以稳定地抵御少数“针锋相对”玩家的入侵,但不能抵御大量的入侵。
 
 
但如果我们使用“始终合作”,那么“针锋相对”就不再是进化均衡策略了。由于大量的“针锋相对”玩家转向选择保持合作,因此“始终合作”策略在这一群体中的表现相同。最终,“始终合作”的变异者将不会被淘汰。当然,即使“始终合作”和“针锋相对”的人群可以共存,但是如果“始终背叛”的玩家只占总量的一小部分时,那么策略选择压力会对“始终合作”不利。而由于合作带来的利益要比背叛来的低,玩家们会倾向于选择“针锋相对”。
 
但如果我们使用“始终合作”,那么“针锋相对”就不再是进化均衡策略了。由于大量的“针锋相对”玩家转向选择保持合作,因此“始终合作”策略在这一群体中的表现相同。最终,“始终合作”的变异者将不会被淘汰。当然,即使“始终合作”和“针锋相对”的人群可以共存,但是如果“始终背叛”的玩家只占总量的一小部分时,那么策略选择压力会对“始终合作”不利。而由于合作带来的利益要比背叛来的低,玩家们会倾向于选择“针锋相对”。
  
 
 
This demonstrates the difficulties in applying the formal definition of an ESS to games with large strategy spaces, and has motivated some to consider alternatives.
 
 
This demonstrates the difficulties in applying the formal definition of an ESS to games with large strategy spaces, and has motivated some to consider alternatives.
 
  
 
这证明了要想将进化均衡策略的正式定义应用于具有较大策略空间的游戏中,是非常困难的,这就促使了一些人去思索替代方案。
 
这证明了要想将进化均衡策略的正式定义应用于具有较大策略空间的游戏中,是非常困难的,这就促使了一些人去思索替代方案。
  
== Human behavior 人类行为 ==
 
  
The fields of [[sociobiology]] and [[evolutionary psychology]] attempt to explain animal and human behavior and social structures, largely in terms of evolutionarily stable strategies. [[Psychopathy#Sociopathy|Sociopathy]] (chronic antisocial or criminal behavior) may be a result of a combination of two such strategies.<ref>{{cite journal |doi=10.1017/S0140525X00039595 |author=Mealey, L. |title=The sociobiology of sociopathy: An integrated evolutionary model |journal=Behavioral and Brain Sciences |volume=18 |issue=3 |pages=523–99 |year=1995 }}</ref>
+
==人类行为 Human behavior ==
  
The fields of sociobiology and evolutionary psychology attempt to explain animal and human behavior and social structures, largely in terms of evolutionarily stable strategies. Sociopathy (chronic antisocial or criminal behavior) may be a result of a combination of two such strategies.
+
社会生物学和进化心理学领域试图通过进化均衡策略来解释动物和人类的行为以及社会的结构。反社会人格(长期的反社会或犯罪行为)被认为可能是这两种策略结合的后果。<ref>{{cite journal |doi=10.1017/S0140525X00039595 |author=Mealey, L. |title=The sociobiology of sociopathy: An integrated evolutionary model |journal=Behavioral and Brain Sciences |volume=18 |issue=3 |pages=523–99 |year=1995 }}</ref>
  
社会生物学和进化心理学领域试图通过进化均衡策略来解释动物和人类的行为以及社会的结构。反社会人格(长期的反社会或犯罪行为)被认为可能是这两种策略结合的后果。
 
  
 +
进化均衡策略最初被认为是用于解释生物进化论的,但是它们也可以应用于其他场景。实际上,一大类自适应动力学都具有稳定状态。因此,它们可以用来解释缺乏不受任何基因影响的人类行为。
  
  
Evolutionarily stable strategies were originally considered for biological evolution, but they can apply to other contexts. In fact, there are stable states for a large class of [[adaptive dynamics]]. As a result, they can be used to explain human behaviours that lack any genetic influences.
+
==参见==
  
Evolutionarily stable strategies were originally considered for biological evolution, but they can apply to other contexts. In fact, there are stable states for a large class of adaptive dynamics. As a result, they can be used to explain human behaviours that lack any genetic influences.
+
*[[反捕食者适应 Antipredator adaptation]]
  
进化均衡策略最初被认为是用于解释生物进化论的,但是它们也可以应用于其他场景。实际上,一大类自适应动力学都具有稳定状态。因此,它们可以用来解释缺乏不受任何基因影响的人类行为。
+
*[[行为生态学 Behavioral ecology]]
  
==See also 其他参考资料==
+
*[[进化心理学 Evolutionary psychology]]
  
*[[Antipredator adaptation 反捕食者适应]]
+
*[[适应度景观 Fitness landscape ]]
  
*[[Behavioral ecology 行为生态学]]
+
*[[鹰鸽博弈 Hawk–dove game]]
  
*[[Evolutionary psychology 进化心理学]]
+
*[[社会生物学 Sociobiology]]
  
*[[Fitness landscape 适应度景观]]
+
*[[消耗战(游戏) War of attrition (game)]]
  
*[[Chicken (game) 小鸡博弈|Hawk–dove game 鹰鸽博弈]]
 
  
*[[Koinophilia]]
+
== 参考文献 ==
  
*[[Sociobiology 社会生物学]]
+
{{Reflist}}
  
*[[War of attrition (game) 消耗战(游戏)]]
 
  
== References 参考文献 ==
+
== 进一步阅读==
  
{{Reflist}}
+
* {{Cite book | last1=Weibull | first1=Jörgen | title=Evolutionary game theory | publisher=MIT Press| isbn= 978-0-262-73121-8| year=1997 }} Classic reference textbook.  
 
 
== Further reading 相关阅读==
 
 
 
* {{Cite book | last1=Weibull | first1=Jörgen | title=Evolutionary game theory | publisher=[[MIT Press]] | isbn= 978-0-262-73121-8| year=1997 }} Classic reference textbook.  
 
  
 
* {{cite journal | doi = 10.1016/0040-5809(87)90029-3 | last1 = Hines | first1 = W. G. S. | year = 1987 | title = Evolutionary stable strategies: a review of basic theory | url = | journal = Theoretical Population Biology | volume = 31 | issue = 2| pages = 195–272 | pmid = 3296292 }}
 
* {{cite journal | doi = 10.1016/0040-5809(87)90029-3 | last1 = Hines | first1 = W. G. S. | year = 1987 | title = Evolutionary stable strategies: a review of basic theory | url = | journal = Theoretical Population Biology | volume = 31 | issue = 2| pages = 195–272 | pmid = 3296292 }}
第508行: 第236行:
 
* {{Cite book | last2=Shoham | first2=Yoav | last1=Leyton-Brown | first1=Kevin | title=Essentials of Game Theory: A Concise, Multidisciplinary Introduction  | publisher=Morgan & Claypool Publishers | isbn=978-1-59829-593-1 | url=http://www.gtessentials.org | year=2008 | location=San Rafael, CA }}. An 88-page mathematical introduction; see Section 3.8. [http://www.morganclaypool.com/doi/abs/10.2200/S00108ED1V01Y200802AIM003 Free online] at many universities.
 
* {{Cite book | last2=Shoham | first2=Yoav | last1=Leyton-Brown | first1=Kevin | title=Essentials of Game Theory: A Concise, Multidisciplinary Introduction  | publisher=Morgan & Claypool Publishers | isbn=978-1-59829-593-1 | url=http://www.gtessentials.org | year=2008 | location=San Rafael, CA }}. An 88-page mathematical introduction; see Section 3.8. [http://www.morganclaypool.com/doi/abs/10.2200/S00108ED1V01Y200802AIM003 Free online] at many universities.
  
* [[Geoff Parker|Parker, G. A.]] (1984) Evolutionary stable strategies. In ''Behavioural Ecology: an Evolutionary Approach'' (2nd ed) [[John Krebs|Krebs, J. R.]] & Davies N.B., eds. pp 30–61. Blackwell, Oxford.
+
* [[Geoff Parker|Parker, G. A.]] (1984) Evolutionary stable strategies. In ''Behavioural Ecology: an Evolutionary Approach'' (2nd ed) John Krebs & Davies N.B., eds. pp 30–61. Blackwell, Oxford.
 
 
* {{Cite book | last1=Shoham | first1=Yoav | last2=Leyton-Brown | first2=Kevin | title=Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations | publisher=[[Cambridge University Press]] | isbn=978-0-521-89943-7 | url=http://www.masfoundations.org | year=2009 | location=New York }}. A comprehensive reference from a computational perspective; see Section 7.7. [http://www.masfoundations.org/download.html Downloadable free online].
 
 
 
* [[John Maynard Smith|Maynard Smith, John]]. (1982) ''[[Evolution and the Theory of Games]]''. {{ISBN|0-521-28884-3}}. Classic reference.
 
 
 
== External links 相关链接==
 
 
 
* [http://www.animalbehavioronline.com/ess.html Evolutionarily Stable Strategies] at Animal Behavior: An Online Textbook by Michael D. Breed.
 
 
 
* 动物行为的进化均衡策略:Michael D. Breed的在线教科书。
 
 
 
 
 
* [https://web.archive.org/web/20060906092853/http://www.holycross.edu/departments/biology/kprestwi/behavior/ESS/ESS_index_frmset.html Game Theory and Evolutionarily Stable Strategies], Kenneth N. Prestwich's site at College of the Holy Cross.
 
* 博弈论与进化均衡策略 - Kenneth N. Prestwich 圣十字学院的网站。
 
 
 
 
 
*[http://knol.google.com/k/klaus-rohde/evolutionarily-stable-strategies-and/xk923bc3gp4/50# Evolutionarily stable strategies knol]{{Dead link|date=December 2019 |bot=InternetArchiveBot |fix-attempted=yes }}
 
* 进化均衡策略
 
 
 
 
 
{{Game theory}}
 
 
 
{{Evolutionary psychology}}
 
 
 
  
 +
* {{Cite book | last1=Shoham | first1=Yoav | last2=Leyton-Brown | first2=Kevin | title=Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations | publisher=Cambridge University Press | isbn=978-0-521-89943-7 | url=http://www.masfoundations.org | year=2009 | location=New York }}. A comprehensive reference from a computational perspective; see Section 7.7. [http://www.masfoundations.org/download.html Downloadable free online].
  
{{DEFAULTSORT:Evolutionarily Stable Strategy}}
+
* John Maynard Smith (1982) ''[[Evolution and the Theory of Games]]''. Classic reference.
  
  
 +
==相关链接==
  
[[Category:Game theory equilibrium concepts]]
+
* [http://www.animalbehavioronline.com/ess.html Evolutionarily Stable Strategies] 动物行为的进化均衡策略:Michael D. Breed的在线教科书。
  
Category:Game theory equilibrium concepts
+
* [https://web.archive.org/web/20060906092853/http://www.holycross.edu/departments/biology/kprestwi/behavior/ESS/ESS_index_frmset.html Game Theory and Evolutionarily Stable Strategies], 博弈论与进化均衡策略 - Kenneth N. Prestwich 圣十字学院的网站。
  
范畴: 博弈论均衡概念
 
  
[[Category:Evolutionary game theory]]
+
*[http://knol.google.com/k/klaus-rohde/evolutionarily-stable-strategies-and/xk923bc3gp4/50# Evolutionarily stable strategies knol]{{Dead link|date=December 2019 |bot=InternetArchiveBot |fix-attempted=yes }} 进化均衡策略
  
Category:Evolutionary game theory
 
  
范畴: 进化博弈论
+
----
 +
本中文词条由[[用户:Jie|Jie]]翻译,[[用户:CecileLi|CecileLi]]审校,[[用户:薄荷|薄荷]]编辑欢迎在讨论页面留言。
  
<noinclude>
 
  
<small>This page was moved from [[wikipedia:en:Evolutionarily stable strategy]]. Its edit history can be viewed at [[进化均衡策略/edithistory]]</small></noinclude>
+
'''本词条内容源自公开资料,遵守 CC3.0协议。'''
  
[[Category:待整理页面]]
+
[[Category:博弈论均衡概念]]
 +
[[Category:进化博弈论]]

2021年1月3日 (日) 20:07的版本


      • 建议将后文全文中的game的翻译改为“博弈”,玩家可改为参与者/生物/种群(中的)个体/进化的参与者——似乎是具有比喻义的词语

进化均衡策略 Evolutionarily Stable Strategy(ESS)是指一个种群在特定环境下采用的策略或策略组,它具有不可渗透性,即该群体的进化策略不可能受到初期占比小的其他策略或策略组的影响。这与 博弈论 Game Theory 行为生态学 Behavioural Ecology进化心理学 Evolutionary Psychology有关。进化均衡策略是 纳什均衡 Nash equilibrium的细化,相当于是稳定进化的纳什均衡:一旦该种群固定了所采用的策略,仅依靠自然选择过程就足以防止其他策略(如变异)的成功入侵。该理论并非通过有目的性地处理外部环境可能发生的变化,来引入新的种群进化选择力。 The theory is not intended to deal with the possibility of gross external changes to the environment that bring new selective forces to bear.这一理论想要阐述的不是处理外部环境发生重大变化的可能性,而是这种变化会带来新的选择性力量。


在1972年约翰·梅纳德·史密斯 John Maynard Smith出版的书中,[1] 进化均衡策略首次作为一个特定的术语出现并被广泛应用于行为生态学和经济学之中。如今在人类学、进化心理学、哲学和政治学中,这一概念也已得到使用。


发展历史

进化均衡策略是由约翰·梅纳德·史密斯 John·Maynard·Smith乔治·R·普赖斯 George·R·Price 在1973年的《Nature》杂志上提出并定义的。[2]但是由于同行评审《Nature》中的论文花费了大量时间,导致在此之前,Maynard·Smith就在1972年的一本论文集《On Evolution》[1] 中发表了另一篇论文,因此有时学者们会选择引用他在1972年出版的《论进化论》.上发表的论文而非1973年《Nature》杂志上的,尽管通常《Nature》杂志上的论文很短,但是大学图书馆可能收藏有《Nature》的副本;随后1974年,Maynard·Smith在《理论生物学》杂志上又发表了一篇更长的论文。[3] Maynard·Smith在1982年的新著作《演化与博弈论 Evolution and the Theory of Games》中,他又进一步解释了这个概念。[4]之后该版本的解释时常被引用。实际上,虽然往往没有引证给出,但是因为引用者已经假定了读者是熟悉它的,因此进化均衡策略已经成为了博弈论的核心。


Maynard·Smith在同行评审普莱斯论文的时候读到了这个论点,随后他将这个口头论点数学形式化。之后Smith意识到Price并没有准备好去修改并发表他的文章,于是他就提出在文末加上Price名字让其成为作为合著者。


事实上“进化均衡”这个概念源自于麦克阿瑟 R·H·MacArthur[5]和汉密尔顿 W·D·Hamilton[6]关于性别比例的研究,以及费雪原理 Fisher's principle,尤其是汉密尔顿(1967)提出的“ 无敌战略Unbeatable Strategy”。随后1999年,Maynard·Smith因其对“进化均衡策略”概念的发展以及“行为进化博弈论“的应用研究做出了杰出贡献,与以上学者共同获得了著名的Crafoord奖。.[7]


进化均衡策略的应用:

  • 进化均衡策略是理查德·道金斯 Richard Dawkins1976年最畅销的著作《自私的基因 The Selfish Gene》中用来分析进化的主要元素。
  • 由罗伯特·阿克塞尔罗德 Robert Axelrod在1984年创作出版的《合作的进化 The Evolution of Cooperation》一书中首次将进化均衡策略用于社会科学领域。从那时起,它就被广泛用于社会科学,包括人类学、经济学、哲学和政治学。
  • 在社会科学中,人们最主要的兴趣不是将进化均衡策略作为生物进化的终点,而是将其作为文化进化或个体学习的终点。[8]
  • 在进化心理学中,进化均衡策略主要被用作人类生物学进化的模型。


策略的假设与动机

在博弈论中,纳什均衡 Nash equilibrium相当于一种传统的解决方案概念,而这依赖于玩家的对它的认知。它假定玩家知道游戏的结构并且会有意识地尝试预测对手的行动以期最大程度地提高自己的收益。另外,纳什均衡也假定所有玩家都知道以下规则(请参阅 常识性知识 Common Knowledge)。后来这些假设又被用于解释为什么游戏参与者们会选择纳什均衡策略。


进化均衡策略的动机则完全不同。在这一语境下玩家的策略被假定为具有生物编码性而且可遗传至下一代。玩家个人并不能控制自己的策略,也无需了解游戏规则。他们繁殖并服从自然选择,而游戏的收益则代表着繁衍成功(生物适应性)。同时可以想象,在繁衍生息过程中,游戏策略偶尔会通过类似基因突变而无计划地发生变异,产生其方案策略。之后他们会通过互相抵制直到出现最优势的策略,即进化均衡策略。


考虑到本质上全然不同的动机假设,进化均衡策略和纳什均衡偶然的一致性令人感到惊讶。实际上,每个进化均衡策略都有对应的纳什均衡,但是某些纳什均衡却不同于进化均衡策略。


纳什均衡 Nash equilibrium

进化均衡策略是纳什均衡的改进式(关于两者的对比见下一节)。在纳什均衡中,如果所有参与者都采用各自的策略方案,且都无法通过改用任何其他策略以获益,那么在这两人的游戏中,我们将此看作一个策略对。令E(S,T)表示策略S对策略T的收益。当且仅当双方都成立且所有TS时,策略对(S, S) 为该两人游戏中的纳什均衡:


E(S,S) ≥ E(T,S)


在这个定义中,策略T 可以成为S 的中性替代(即最后得分相同,但这已经是最好的结果了)。


即使采用 T 后其得分相等,纳什均衡也被认为是稳定的,当然前提是假设不存在长期动机去鼓励玩家采用 T 而不是 S


Smith和Price为策略 S 指定了两个条件,使其成为进化均衡策略,对于所有的 TS,两个选其一:

1. E(S,S) > E(T,S)

2. E(S,S) = E(T,S) 且 E(S,T) > E(T,T)


第一个条件有时称为严格纳什均衡[9] 而第二个有时称为梅纳德·史密斯第二条件,它意味着,尽管策略 T 在对抗策略 S 时收益不变,但继续使用策略 S 的玩家在对抗策略T时收益具有明显优势。


后来伯恩哈德·托马斯 Bernhard Thomas在他的论文《On evolutionarily stable sets》中提出了更大胆的定义。[10] 它不同于纳什均衡概念在进化均衡策略中的作用。根据上面第一个定义中给出的术语,此处要求对所有 TS

1. E(S,S) ≥ E(T,S),并且

2. E(S,T) > E(T,T),


在这两个公式中,第一个指定了该策略采取纳什均衡,而第二则是指定满足梅纳德·史密斯第二条件。请注意,这两个定义并不完全相等:例如,在接下来的协调游戏中的每个独立策略都是第一个定义的进化均衡策略,而非第二个。


换句话说,此定义还可以这么理解,当两个玩家都使用策略 S 时:第一个玩家的收益要高于(或等于)当第一个玩家更改为策略T而第二个玩家保持策略S时的收益;当第一个玩家的对手将策略更改为T时,第一个玩家自身的收益要大于他们两者都更改为策略T。


这种表述更清楚地强调了纳什均衡条件在进化均衡策略中的作用。同时还考虑到对相关概念进行自然定义,例如 弱进化均衡策略 Weak evolutionarily stable strategy 进化均衡集合 Evolutionarily stable set[10]


纳什均衡与进化均衡策略之间差异的示例

囚徒困境prisoner's dilemma
合作Cooperate 叛变Defect
合作Cooperate 3, 3 1, 4
叛变Defect 4, 1 2, 2
以邻为壑Harm thy neighbor
A B
A 2,2 1,2
B 2,1 2,2

在大多数简单的游戏中,进化均衡策略和纳什均衡完全重合。例如,在游戏 《囚徒困境 Prisoner's Dilemma》中,只有一个纳什均衡,其策略(叛变 Defect)也是一种进化均衡策略。


还有一些游戏可能具有非进化均衡策略的纳什均衡。例如,在游戏 《以邻为壑 Harm thy neighbor》中(此处显示为回报矩阵),(A, A)和(B, B)都是纳什均衡,因为玩家无法通过选择放弃任一个来做得更好。但是,只有B是进化均衡策略(也是强纳什)。A不是进化均衡策略,因此B可以中立地入侵A策略的群体并占据优势地位,因为B对B的得分要比A对B的得分高。由于E(A, A) = E(B, A),因此可以通过梅纳德·史密斯的第二个条件来捕获此动态,但是 E(A,B) > E(B,B)并非如此。


伤害大家Harm everyone
C D
C 2,2 1,2
D 2,1 0,0
小鸡博弈The Game of Chicken
转身离开Swerve 留下Stay
转身离开Swerve 0,0 -1,+1
留下Stay +1,-1 -20,-20


纳什均衡以及同等评分的策略都可以是进化均衡策略。例如,在游戏 《伤害大家 Harm everyone》中, C 是进化均衡策略,因为它满足了梅纳德·史密斯第二条件。 D 策略可以暂时入侵C策略群体,因为D策略可以获得和 C 策略一样的评分。但是当他们开始互相对抗时,他们会付出一定的代价;CD 的得分比D对D的得分高。因此,尽管 E(C, C) = E(D, C),但 E(C,D) > E(D,D)。因此,最后C是最终进化均衡策略。


还有一些游戏即使具有纯粹的纳什均衡策略,但可能它们都不是进化均衡策略。比如游戏 《小鸡博弈 The Game of Chicken》,该游戏中有两种纯粹的纳什均衡策略(转身离开Swerve,留下Stay)和(留下Stay,转身离开Swerve)。但是,在<font color="#ff8000"无关联不对称 Uncorrelated Asymmetry缺失的情况下,Swerve和Stay都不是进化均衡策略。此时存在第三种纳什均衡,它属于混合策略并且是该游戏的进化均衡策略(详情请参见鹰鸽博弈 Hawk-dove游戏和最佳响应 Best Response)。


最后一个示例指出了纳什均衡与进化均衡策略之间的重要区别。纳什均衡是在策略集(每个参与者的策略规范)上定义的,而进化均衡策略是根据策略本身定义的。进化均衡策略定义的平衡必须始终是对称的,因此其平衡点更少。


与进化稳定状态的比较

在种群生物学中,进化均衡策略和 进化稳定状态Evolutionarily Stable State这两个概念密切相关,但却描述了不同的情况。


在进化均衡策略中,如果所有种群的成员都采用它,那么任何突变策略都无法入侵。无形中只要所有成员都使用了这种策略,就不再有“理性”的选择。进化均衡策略是经典博弈论的一部分。


在进化稳定状态下,如果干扰不太大的话,即使受到冲击,种群的基因组成通过策略选择同样能够进行恢复。而这就是是种群的动态特性,即使受到初始状态的干扰,它们的状态会通过使用策略或混合策略组进行恢复。它是 群体遗传学Population Genetics 动力学系统Dynamical System 演化博弈论Evolutionary Game Theory的一部分。这现在被称为 收敛稳定性Convergent Stability[11]


B. Thomas将“进化均衡策略”这一术语应用于可混合的独立策略,并将“进化稳定种群状态”应用于采取纯策略的混合种群,该应用在形式上可能等同于混合的“进化均衡策略”。[12]


种群是否在进化过程中处于稳定状态与它的基因多样性无关,因为在遗传上它可以是单态或多态的。


随机进化均衡策略

在进化均衡策略的经典定义中,没有任何突变策略可以入侵。然而在有限种群中,尽管可能性很小,但是任意一种突变体原则上是可能入侵的,这就意味着在这个种群中绝对没有进化均衡策略的存在。如果在无限种群中,存在一个概率为P的新突变策略入侵,此时,正如对冲交易的进化过程所描述的那样,进化均衡策略就被认为是具有概率大于p的策略方案且开始反击最初入侵的新突变策略个体。[13]


囚徒困境 Prisoner's dilemma

模板:Payoff matrix

利他主义和社会合作的普遍模式就是囚徒困境。在这里,如果一群玩家选择“合作”,那么他们这个集体就会生活的更好,但是由于“背叛”为个人带来的利益更大,因此每个玩家都有动机去选择“背叛”。解决该问题的一个可能方案是通过让个体反复与同一玩家来对战,由此引入报复机制。在所谓的囚徒困境迭代过程中,相同的两个人一遍又一遍地扮演着他们的角色。尽管囚犯的困境只有两种策略(合作和背叛),但迭代的囚徒困境游戏却具有大量可能的策略。由于个体对于每个历史可以具有不同的应急计划,并且游戏可以无限次重复,因此实际上可能有无限个此类应急计划。


Three simple contingency plans which have received substantial attention are Always Defect, Always Cooperate, and Tit for Tat. The first two strategies do the same thing regardless of the other player's actions, while the latter responds on the next round by doing what was done to it on the previous round—it responds to Cooperate with Cooperate and Defect with Defect.

Three simple contingency plans which have received substantial attention are Always Defect, Always Cooperate, and Tit for Tat. The first two strategies do the same thing regardless of the other player's actions, while the latter responds on the next round by doing what was done to it on the previous round—it responds to Cooperate with Cooperate and Defect with Defect.

其备受关注的三个简单的应急计划是:“始终背叛 Always Defect”,“始终合作 Always Cooperate”和“针锋相对 Tit for Tat”。前两种策略会始终执行相同的操作,而不受另一方行为的影响,而后一种策略则是通过上一轮中执行的操作来对下一轮中的对象做出响应,即“合作对合作”或“背叛对背叛”。


如果整个种群都选择“针锋相对”,并且出现了一个变异者选择了“始终背叛”,那么“针锋相对”将战胜“始终背叛”。如果该变异者的种群太大,则它所占的百分比将保持很小。因此,就这两种策略而言,“针锋相对”就是一种进化均衡策略。另一方面,“始终背叛”的玩家群体可以稳定地抵御少数“针锋相对”玩家的入侵,但不能抵御大量的入侵。.[14] 但如果我们使用“始终合作”,那么“针锋相对”就不再是进化均衡策略了。由于大量的“针锋相对”玩家转向选择保持合作,因此“始终合作”策略在这一群体中的表现相同。最终,“始终合作”的变异者将不会被淘汰。当然,即使“始终合作”和“针锋相对”的人群可以共存,但是如果“始终背叛”的玩家只占总量的一小部分时,那么策略选择压力会对“始终合作”不利。而由于合作带来的利益要比背叛来的低,玩家们会倾向于选择“针锋相对”。


这证明了要想将进化均衡策略的正式定义应用于具有较大策略空间的游戏中,是非常困难的,这就促使了一些人去思索替代方案。


人类行为 Human behavior

社会生物学和进化心理学领域试图通过进化均衡策略来解释动物和人类的行为以及社会的结构。反社会人格(长期的反社会或犯罪行为)被认为可能是这两种策略结合的后果。[15]


进化均衡策略最初被认为是用于解释生物进化论的,但是它们也可以应用于其他场景。实际上,一大类自适应动力学都具有稳定状态。因此,它们可以用来解释缺乏不受任何基因影响的人类行为。


参见


参考文献

  1. 1.0 1.1 Maynard Smith, J. (1972). "Game Theory and The Evolution of Fighting". On Evolution. Edinburgh University Press. ISBN 0-85224-223-9. https://archive.org/details/onevolution0000mayn. 
  2. Maynard Smith, J.; Price, G.R. (1973). "The logic of animal conflict". Nature. 246 (5427): 15–8. Bibcode:1973Natur.246...15S. doi:10.1038/246015a0.
  3. Maynard Smith, J. (1974). "The Theory of Games and the Evolution of Animal Conflicts" (PDF). Journal of Theoretical Biology. 47 (1): 209–21. doi:10.1016/0022-5193(74)90110-6. PMID 4459582.
  4. Maynard Smith, John (1982). Evolution and the Theory of Games. ISBN 0-521-28884-3. 
  5. MacArthur, R. H. (1965). Waterman T.. ed. Theoretical and mathematical biology. New York: Blaisdell. 
  6. Hamilton, W.D. (1967). "Extraordinary sex ratios". Science. 156 (3774): 477–88. Bibcode:1967Sci...156..477H. doi:10.1126/science.156.3774.477. JSTOR 1721222. PMID 6021675.
  7. Press release for the 1999 Crafoord Prize
  8. Alexander, Jason McKenzie (23 May 2003). "Evolutionary Game Theory". Stanford Encyclopedia of Philosophy. Retrieved 31 August 2007.
  9. Harsanyi, J (1973). "Oddness of the number of equilibrium points: a new proof". Int. J. Game Theory. 2 (1): 235–50. doi:10.1007/BF01737572.
  10. 10.0 10.1 Thomas, B. (1985). "On evolutionarily stable sets". J. Math. Biology. 22: 105–115. doi:10.1007/bf00276549.
  11. Apaloo, J.; Brown, J. S.; Vincent, T. L. (2009). "Evolutionary game theory: ESS, convergence stability, and NIS". Evolutionary Ecology Research. 11: 489–515. Archived from the original on 2017-08-09. Retrieved 2018-01-10.
  12. Thomas, B. (1984). "Evolutionary stability: states and strategies". Theor. Popul. Biol. 26 (1): 49–67. doi:10.1016/0040-5809(84)90023-6.
  13. King, Oliver D.; Masel, Joanna (1 December 2007). "The evolution of bet-hedging adaptations to rare scenarios". Theoretical Population Biology. 72 (4): 560–575. doi:10.1016/j.tpb.2007.08.006. PMC 2118055. PMID 17915273.
  14. Axelrod, Robert (1984). The Evolution of Cooperation. ISBN 0-465-02121-2. 
  15. Mealey, L. (1995). "The sociobiology of sociopathy: An integrated evolutionary model". Behavioral and Brain Sciences. 18 (3): 523–99. doi:10.1017/S0140525X00039595.


进一步阅读

  • Weibull, Jörgen (1997). Evolutionary game theory. MIT Press. ISBN 978-0-262-73121-8.  Classic reference textbook.
  • Parker, G. A. (1984) Evolutionary stable strategies. In Behavioural Ecology: an Evolutionary Approach (2nd ed) John Krebs & Davies N.B., eds. pp 30–61. Blackwell, Oxford.


相关链接




本中文词条由Jie翻译,CecileLi审校,薄荷编辑欢迎在讨论页面留言。


本词条内容源自公开资料,遵守 CC3.0协议。