|
|
第1行: |
第1行: |
− | 此词条暂由彩云小译翻译,由Stefanie初步审校。
| |
| | | |
| | | |
第6行: |
第5行: |
| | | |
| | | |
| + | ==词源学 Etymology== |
| | | |
| + | “术语 ‘System’源于拉丁语"systēma",而这一拉丁词汇源于希腊语"σύστημα"。"systēma"意思为:由若干部分或成员组成的整体概念,系统,字面意义为"建构"。<ref>[http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma "σύστημα"], Henry George Liddell, Robert Scott, ''A Greek–English Lexicon'', on Perseus Digits Library.</ref> |
| | | |
− | ==词源学 Etymology==
| |
− |
| |
− | “术语 ‘System’源于[[拉丁语]]"systēma",而这一拉丁词汇源于希腊语"σύστημα"。"systēma"意思为:由若干部分或成员组成的整体概念,系统,字面意义为"建构"。<ref>
| |
− | [http://www.perseus.tufts.edu/hopper/text?doc=Perseus%3Atext%3A1999.04.0057%3Aentry%3Dsu%2Fsthma "σύστημα"], Henry George Liddell, Robert Scott, ''A Greek–English Lexicon'', on Perseus Digits Library.
| |
− | </ref>
| |
| | | |
| ==历史 History== | | ==历史 History== |
第42行: |
第38行: |
| </ref> | | </ref> |
| | | |
− | * 19世纪,研究[[热力学 thermodynamics]]的法国物理学家[[尼古拉·莱昂纳尔·萨迪·卡诺 Nicolas Léonard Sadi Carnot]]开创了[[自然科学 natural science]]中的“系统”概念。1824年,他研究了[[蒸汽机 steam engine]]中的一个系统,他称之为“工作介质 working substance”(通常是一团水蒸气),这涉及到加热时该系统的工作能力。该工作介质可与锅炉、冷水库(冷水流)、活塞(工作体通过推动它来做功的部件)接触。1850年,德国物理学家[[鲁道夫·克劳修斯]]扩展了这一图景,把[[environment (systems)|外部环境]]的概念纳入其中,并开始以“工作体”来指称该系统。 | + | * 19世纪,研究[[热力学 thermodynamics]]的法国物理学家[[尼古拉·莱昂纳尔·萨迪·卡诺 Nicolas Léonard Sadi Carnot]]开创了自然科学中的“系统”概念。1824年,他研究了蒸汽机中的一个系统,他称之为“工作介质 working substance”(通常是一团水蒸气),这涉及到加热时该系统的工作能力。该工作介质可与锅炉、冷水库(冷水流)、活塞(工作体通过推动它来做功的部件)接触。1850年,德国物理学家[[鲁道夫·克劳修斯]]扩展了这一图景,把外部环境的概念纳入其中,并开始以“工作体”来指称该系统。 |
| | | |
− | * 生物学家[[路德维希·冯·贝塔郎菲 Ludwig von Bertalanffy]]成为[[一般系统论]]的先驱之一,1945年,他提出了适用于广义系统及其子类的模型、原理和法则,而不考虑它们的特殊类型、组成要素的性质、乃至其相互之间的关系或‘力’。。<ref name="Bertalanfy1945">1945, ''Zu einer allgemeinen Systemlehre,'' Blätter für deutsche Philosophie, 3/4. (Extract in: Biologia Generalis, 19 (1949), 139–164.</ref> | + | * 生物学家[[路德维希·冯·贝塔郎菲 Ludwig von Bertalanffy]]成为'''一般系统论'''的先驱之一,1945年,他提出了适用于广义系统及其子类的模型、原理和法则,而不考虑它们的特殊类型、组成要素的性质、乃至其相互之间的关系或‘力’。。<ref name="Bertalanfy1945">1945, ''Zu einer allgemeinen Systemlehre,'' Blätter für deutsche Philosophie, 3/4. (Extract in: Biologia Generalis, 19 (1949), 139–164.</ref> |
| | | |
| * [[诺伯特·维纳 Norbert Wiener]]和[[威廉 罗斯·阿什比 William Ross Ashby]]开拓性地将数学应用于系统研究,系统概念得到重大发展。< ref name ="wiener1948"> <ref name="Wiener1948"> | | * [[诺伯特·维纳 Norbert Wiener]]和[[威廉 罗斯·阿什比 William Ross Ashby]]开拓性地将数学应用于系统研究,系统概念得到重大发展。< ref name ="wiener1948"> <ref name="Wiener1948"> |
| 1948, ''Cybernetics: Or the Control and Communication in the Animal and the Machine.'' Paris, France: Librairie Hermann & Cie, and Cambridge, MA: MIT Press.Cambridge, MA: MIT Press. | | 1948, ''Cybernetics: Or the Control and Communication in the Animal and the Machine.'' Paris, France: Librairie Hermann & Cie, and Cambridge, MA: MIT Press.Cambridge, MA: MIT Press. |
− | </ref><ref name="Ashby1950"> | + | </ref><ref name="Ashby1950">1956. ''[http://pespmc1.vub.ac.be/ASHBBOOK.html An Introduction to Cybernetics]'', Chapman & Hall.</ref> |
− | 1956. ''[http://pespmc1.vub.ac.be/ASHBBOOK.html An Introduction to Cybernetics]'', Chapman & Hall. | |
− | </ref> | |
| | | |
| * 20世纪80年代,[[约翰·亨利·霍兰德 John Henry Holland]],[[默里·盖尔曼 Murray Gell-Mann]]等人在跨学科的[[圣菲研究所 Santa Fe Institute]]中创造了术语: [[复杂适应系统 complex adaptive system]]。 | | * 20世纪80年代,[[约翰·亨利·霍兰德 John Henry Holland]],[[默里·盖尔曼 Murray Gell-Mann]]等人在跨学科的[[圣菲研究所 Santa Fe Institute]]中创造了术语: [[复杂适应系统 complex adaptive system]]。 |
| + | |
| | | |
| ==概念 == | | ==概念 == |
| | | |
− | '''环境和边界'''
| + | ===环境和边界=== |
| | | |
| :[[系统论 Systems theory]]认为世界是一个由相互连接的部分组成的复杂系统。辨识系统的方法是定义系统的'''边界 (拓扑) Boundary (topology)''',即选择哪些实体位于系统内部,而哪些实体在外部——即作为环境的一部分。可以简化系统的表述('''科学建模 Scientific modelling''')以理解、预测或影响其未来活动。这些模型描绘了系统的结构 structure和行为 behavior。 | | :[[系统论 Systems theory]]认为世界是一个由相互连接的部分组成的复杂系统。辨识系统的方法是定义系统的'''边界 (拓扑) Boundary (topology)''',即选择哪些实体位于系统内部,而哪些实体在外部——即作为环境的一部分。可以简化系统的表述('''科学建模 Scientific modelling''')以理解、预测或影响其未来活动。这些模型描绘了系统的结构 structure和行为 behavior。 |
| | | |
| | | |
− | '''自然系统和人造系统'''
| + | ===自然系统和人造系统=== |
| | | |
| 系统可分为自然系统和人造(人为设计)系统。自然系统的存在肯没有明确目的,但是自然系统的活动却可以被观察者当作有所目的去解读。人造系统的目的各不相同,通过在系统活动与系统一起实施的动作来实现。系统的各部分是相互关联的,它们必须“被设计成一个连贯的整体去工作”,否则它们将变成两个以上完全不同的系统的部分。 | | 系统可分为自然系统和人造(人为设计)系统。自然系统的存在肯没有明确目的,但是自然系统的活动却可以被观察者当作有所目的去解读。人造系统的目的各不相同,通过在系统活动与系统一起实施的动作来实现。系统的各部分是相互关联的,它们必须“被设计成一个连贯的整体去工作”,否则它们将变成两个以上完全不同的系统的部分。 |
− |
| |
| | | |
| [[File:OpenSystemRepresentation.svg|thumb|252px|“开放系统”有输入和输出流,即与其周围环境物质、能量或者信息的交换。]] | | [[File:OpenSystemRepresentation.svg|thumb|252px|“开放系统”有输入和输出流,即与其周围环境物质、能量或者信息的交换。]] |
| + | ====理论框架 ==== |
| | | |
− | Open systems have input and output flows, representing exchanges of matter, energy or information with their surroundings. | + | :大多数系统是与周围环境交换物质和能量的[[开放系统 (热力学) Open system (thermodynamics)]],例如汽车、咖啡机或地球。而[[封闭系统 closed system]]与其环境交换能量而非物质; 例如一台计算机或[[生物圈2号 Biosphere 2]]项目。一个[[孤立系统 isolated system]]与它的环境既不交换物质也不交换能量。这种系统的一个理论例子是[[宇宙 Universe]]。 |
| | | |
− | ;理论框架
| |
| | | |
− | :大多数系统是与周围环境交换物质和能量的[[开放系统 (热力学) Open system (thermodynamics)|开放系统 open systems]],例如[[汽车]]、[[咖啡机]]或[[地球]]。而[[封闭系统 closed system]]与其环境交换能量而非物质; 例如一台计算机或[[生物圈2号 Biosphere 2]]项目。一个[[孤立系统 isolated system]]与它的环境既不交换物质也不交换能量。这种系统的一个理论例子是[[宇宙 Universe]]。
| + | ====过程和转变过程 Process and transformation process==== |
− | | |
− | | |
− | ;过程和转变过程 Process and transformation process
| |
| | | |
| [[开放系统]]也可视为一个有界的转换过程,即输入转输出过程或过程集合的[[黑盒 black box]]。输入被消耗,并产生输出。这里说的输入和输出是非常广义的。例如一艘客轮的输出是乘客从出发地向目的地的移动。 | | [[开放系统]]也可视为一个有界的转换过程,即输入转输出过程或过程集合的[[黑盒 black box]]。输入被消耗,并产生输出。这里说的输入和输出是非常广义的。例如一艘客轮的输出是乘客从出发地向目的地的移动。 |
| | | |
| | | |
− | ;系统模型 System model
| + | ====系统模型 System model==== |
| | | |
− | :系统有[[视图模式 view model|多种视图 multiple views]]。人造系统会具有如下等视图: [[概念 concept]]、[[系统分析 systems analysis|分析 analysis]]、[[系统设计 Systems design|设计 design]]、[[实现 implementation]]、部署、结构、行为、输入数据和输出数据。所有这些试图需要[[系统模型 system model]]来描述和反映。 | + | :系统有[[视图模式 view model|多种视图 multiple views]]。人造系统会具有如下等视图: 概念、分析、设计、实现、部署、结构、行为、输入数据和输出数据。所有这些试图需要[[系统模型 system model]]来描述和反映。 |
| | | |
| | | |
− | ;系统架构 Systems architecture
| + | ====系统架构 Systems architecture==== |
| | | |
| “:[[系统架构 systems architecture]]是一种[[系统模型 system model]],它用一个单一的集成模型来描述[[视图模式 view model|多种视图 multiple views]]。 | | “:[[系统架构 systems architecture]]是一种[[系统模型 system model]],它用一个单一的集成模型来描述[[视图模式 view model|多种视图 multiple views]]。 |
第102行: |
第93行: |
| ==分析 Analysis== | | ==分析 Analysis== |
| | | |
− | 有许多类型的系统,可以进行[[定量分析 Quantitative research|定量 quantitatively]]和[[定性分析 Qualitative research|定性 qualitatively]]分析。例如,在城市[[系统动力学 System dynamics|系统动力学 systems dynamics]]分析中,A.W.斯泰斯 A .W. Steiss<ref>Steiss, 1967, pp. 8–18.</ref>定义了5个交叉系统,包括物质系统和行为系统。对于受系统理论影响的社会学模型,[[Kenneth D. Bailey(社会学家)|Kenneth D. Bailey]]<ref>Bailey, 1994.</ref>用[[概念系统|概念化]]、[[具象(哲学)|具象化]]和抽象化的系统来定义系统,包括[[孤立系统]]、[[封闭系统]]和[[开放系统]]。[[沃尔特 F.巴克利 Walter F. Buckley]]在社会学中将系统定义为机械的、有机的和过程的模型。[[贝拉 H.巴纳锡 Bela H. Banathy]]<ref>Banathy, 1997.</ref>提醒道,了解系统的类型对于任何系统的调研都至关重要,并定义了“自然”和“设计” ,例如人工, 系统。 | + | 有许多类型的系统,可以进行[[定量分析 Quantitative research|定量 quantitatively]]和[[定性分析 Qualitative research|定性 qualitatively]]分析。例如,在城市[[系统动力学 System dynamics|系统动力学 systems dynamics]]分析中,A.W.斯泰斯 A .W. Steiss<ref>Steiss, 1967, pp. 8–18.</ref>定义了5个交叉系统,包括物质系统和行为系统。对于受系统理论影响的社会学模型,[[Kenneth D. Bailey(社会学家)|Kenneth D. Bailey]]<ref>Bailey, 1994.</ref>用概念化、具象化和抽象化的系统来定义系统,包括[[孤立系统]]、[[封闭系统]]和[[开放系统]]。[[沃尔特 F.巴克利 Walter F. Buckley]]从机械、有机和过程模型的角度定义社会学中的系统。[[贝拉 H.巴纳锡 Bela H. Banathy]]<ref>Banathy, 1997.</ref>提醒道,对于任何系统内的调研,了解其系统类型至关重要,同时要明确“自然”和“人为”,换言之人工,系统。 |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“对于受系统理论影响的社会学模型,[[Kenneth D. Bailey(社会学家)|Kenneth D. Bailey]]<ref>Bailey, 1994.</ref>用[[概念系统|概念化]]、[[具象(哲学)|具象化]]和抽象化的系统来定义系统,包括[[孤立系统]]、[[封闭系统]]和[[开放系统]]。”改为“说起受系统理论影响的社会学模型,[[Kenneth D. Bailey(社会学家)|Kenneth D. Bailey]]<ref>Bailey, 1994.</ref>从[[概念系统|概念化]]、[[具象(哲学)|具象化]]和抽象化系统的角度来定义系统,不论是[[孤立系统]]、[[封闭系统]],还是[[开放系统]]。”
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“[[沃尔特 F.巴克利 Walter F. Buckley]]在社会学中将系统定义为机械的、有机的和过程的模型。”改为“[[沃尔特 F.巴克利 Walter F. Buckley]]从机械、有机和过程模型的角度定义社会学中的系统。“
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“了解系统的类型对于任何系统的调研都至关重要,并定义了“自然”和“设计” ,例如人工, 系统。”改为“对于任何系统内的调研,了解其系统类型至关重要,同时要明确“自然”和“人为”,换言之人工,系统。”
| |
− | | |
− | | |
− | | |
− | | |
− | There are many kinds of systems that can be analyzed both [[Quantitative research|quantitatively]] and [[Qualitative research|qualitatively]]. For example, in an analysis of urban [[System dynamics|systems dynamics]], A .W. Steiss<ref>Steiss, 1967, pp. 8–18.</ref> defined five intersecting systems, including the physical subsystem and behavioral system. For sociological models influenced by systems theory, [[Kenneth D. Bailey (sociologist)|Kenneth D. Bailey]]<ref>Bailey, 1994.</ref> defined systems in terms of [[conceptual system|conceptual]], [[Concrete (philosophy)|concrete]], and abstract systems, either [[Isolated system|isolated]], [[Closed system|closed]], or [[Open system (systems theory)|open]]. [[Walter F. Buckley]]<ref>Buckley, 1967.</ref> defined systems in sociology in terms of [[Mechanics|mechanical]], [[organic (model)|organic]], and [[process modeling|process]] models. [[Bela H. Banathy]]<ref>Banathy, 1997.</ref> cautioned that for any inquiry into a system understanding its kind is crucial, and defined "natural" and "designed", i. e. artificial, systems.
| |
− | | |
− | There are many kinds of systems that can be analyzed both quantitatively and qualitatively. For example, in an analysis of urban systems dynamics, A .W. Steiss defined five intersecting systems, including the physical subsystem and behavioral system. For sociological models influenced by systems theory, Kenneth D. Bailey defined systems in terms of conceptual, concrete, and abstract systems, either isolated, closed, or open. Walter F. Buckley defined systems in sociology in terms of mechanical, organic, and process models. Bela H. Banathy cautioned that for any inquiry into a system understanding its kind is crucial, and defined "natural" and "designed", i. e. artificial, systems.
| |
− | | |
− | 应避免混淆这些抽象定义。例如,自然系统包括亚原子系统、[[生命系统理论 living systems theory|生命系统 living systems]]、[[恒星系统 solar system]]、[[星系 Galaxy|星系 galaxies]]和[[宇宙]],而人造系统包括人造物理结构、自然系统和人造系统的混合体、以及概念知识。组织和功能中的人的因素在其相关的抽象系统和表现形式中得以强调。系统在选择其目的、目标、方法、工具等方面的自由程度及其选择分布或集中的自由程度,是区分不同系统的一个主要考虑因素。
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】"应避免混淆这些抽象定义。"修正为“避免混淆这些抽象定义非常重要”。
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“例如,自然系统包括亚原子系统、[[生命系统理论 living systems theory|生命系统 living systems]]、[[恒星系统 solar system]]、[[星系 Galaxy|星系 galaxies]]和[[宇宙]]”,句子中的“恒星系统”应为“太阳系”。
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“组织和功能中的人的因素在其相关的抽象系统和表现形式中得以强调。”改为“组织和功能的人为因素通过其相关的抽象系统和表示形式得以强调。”
| |
− | It is important not to confuse these abstract definitions. For example, natural systems include subatomic systems, [[living systems theory|living systems]], the [[solar system]], [[Galaxy|galaxies]], and the [[Universe]], while artificial systems include man-made physical structures, hybrids of natural and artificial systems, and conceptual knowledge. The human elements of organization and functions are emphasized with their relevant abstract systems and representations. A cardinal consideration in making distinctions among systems is to determine how much freedom the system has to select its purpose, goals, methods, tools, etc. and how free it is to select itself as distributed or concentrated.{{clarify|date=June 2019|reason = How can a system select goals, etc.? Most systems are not self-aware or self describing. What does concentrated or disturbed mean in this context?}}
| |
− | | |
− | It is important not to confuse these abstract definitions. For example, natural systems include subatomic systems, living systems, the solar system, galaxies, and the Universe, while artificial systems include man-made physical structures, hybrids of natural and artificial systems, and conceptual knowledge. The human elements of organization and functions are emphasized with their relevant abstract systems and representations. A cardinal consideration in making distinctions among systems is to determine how much freedom the system has to select its purpose, goals, methods, tools, etc. and how free it is to select itself as distributed or concentrated.
| |
| | | |
| | | |
− | 人工系统有个先天的重大缺陷: 它们必须以一个或多个基本假设为前提,而这些基本假设又是额外知识的基础。{{clarify|date=June 2019|reason = Needs clearer explanation. e.g., what are the fundamental assumptions involved in a hammer, or a refrigerator. What makes a man-made dam system different from a beaver dam in this context?}}{{citation needed|date = June 2019}}这些基本假设本无害,但是它们必须被定义为真,而如果它们实际是假,那么该系统在结构上并不如假设那般完备。例如在[[几何学 geometry]]中,这种缺陷在[[定理 theorem]]的基础假设和定理外推的证明中是非常明显的。
| + | 避免混淆这些抽象定义非常重要。例如,自然系统包括亚原子系统、生命系统、太阳系、星系和宇宙,而人造系统包括人造物理结构、自然系统和人造系统的混合体、以及概念知识。组织和功能的人为因素通过其相关的抽象系统和表示形式得以强调。系统在选择其目的、目标、方法、工具等方面的自由程度及其选择分布或集中的自由程度,是区分不同系统的一个主要考虑因素。 |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“这些基本假设本无害”改为“这些基本假设本身并没有什么坏处。”
| |
− | Artificial systems inherently have a major defect: they must be premised on one or more fundamental assumptions upon which additional knowledge is built.{{clarify|date=June 2019|reason = Needs clearer explanation. e.g., what are the fundamental assumptions involved in a hammer, or a refrigerator. What makes a man-made dam system different from a beaver dam in this context?}}{{citation needed|date = June 2019}} These fundamental assumptions are not inherently deleterious, but they must by definition be assumed as true, and if they are actually false then the system is not as structurally integral as is assumed. For example, in [[geometry]] this is very evident in the postulation of [[theorem]]s and extrapolation of proofs from them.
| |
| | | |
− | Artificial systems inherently have a major defect: they must be premised on one or more fundamental assumptions upon which additional knowledge is built. These fundamental assumptions are not inherently deleterious, but they must by definition be assumed as true, and if they are actually false then the system is not as structurally integral as is assumed. For example, in geometry this is very evident in the postulation of theorems and extrapolation of proofs from them.
| + | 人工系统有个先天的重大缺陷: 它们必须以一个或多个基本假设为前提,而这些基本假设又是额外知识的基础。{{clarify|date=June 2019|reason = Needs clearer explanation. e.g., what are the fundamental assumptions involved in a hammer, or a refrigerator. What makes a man-made dam system different from a beaver dam in this context?}}{{citation needed|date = June 2019}}这些基本假设本身并没有什么坏处。,但是它们必须被定义为真,而如果它们实际是假,那么该系统在结构上并不如假设那般完备。例如在[[几何学 geometry]]中,这种缺陷在[[定理 theorem]]的基础假设和定理外推的证明中是非常明显的。 |
| | | |
− | [[乔治 J.克莱尔 George J. Klir]]<ref>Klir, 1969, pp. 69–72</ref>认为无论如何都不存在“完备和完美的分类” ,并将系统定义为抽象的、[[真实 The Real|真实的 real]]和[[概念性系统 conceptual system|概念的 conceptual]][[物理系统 physical systems]]、有界的和[[无界的系统 unbounded system]]、离散的到连续的系统、脉冲的到[[混合系统 hybrid system|混合的系统 hybrid system]]等。系统与其环境之间的交互可分为相对封闭系统和[[开放系统(系统论))|开放系统 open systems]]。绝对封闭的系统似乎不太可能存在,即使存在,也不大可能为人所知。在“硬”系统和“软”系统之间也有重要的区别<ref>Checkland, 1997; Flood, 1999.</ref> ,“硬”系统在自然界是技术性的,可以适应诸如[[系统工程 systems engineering]]、[[运筹学]]和定量系统分析等方法,“软”系统涉及人和组织,通常与[[彼得·契克兰 Peter Checkland]]和 [[布莱恩·威尔逊 Brian Wilson (系统科学家)|布莱恩·威尔逊 Brian Wilson]]通过[[软体系统方法论]](SSM)开发的概念相关,包括诸如[[行动研究 action research]]和强调参与式设计等方法。在硬系统可能被认为更“科学”的领域,两者的区别往往是暧昧的。
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“[[乔治 J.克莱尔 George J. Klir]]<ref>Klir, 1969, pp. 69–72</ref>认为无论如何都不存在“完备和完美的分类”修正为“[[乔治 J.克莱尔 George J. Klir]]<ref>Klir, 1969, pp. 69–72</ref>认为出于任何目的都不存在‘完备且完美的分类’”。
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】"软体系统方法论"改为“软系统方法论”。
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“在硬系统可能被认为更“科学”的领域,两者的区别往往是暧昧的。”中“暧昧”改为“模糊”。
| |
− |
| |
− | [[George J. Klir]]<ref>Klir, 1969, pp. 69–72</ref> maintained that no "classification is complete and perfect for all purposes", and defined systems as abstract, [[The Real|real]], and [[conceptual system|conceptual]] [[physical systems]], bounded and [[unbounded system]]s, discrete to continuous, pulse to [[hybrid system]]s, etc. The interactions between systems and their environments are categorized as relatively closed and [[open system (systems theory)|open systems]]. It seems most unlikely that an absolutely closed system can exist or, if it did, that it could be known by man. Important distinctions have also been made<ref>Checkland, 1997; Flood, 1999.</ref> between ''hard'' systems – technical in nature and amenable to methods such as [[systems engineering]], operations research, and quantitative systems analysis – and ''soft'' systems that involve people and organisations, commonly associated with concepts developed by [[Peter Checkland]] and [[Brian Wilson (systems scientist)|Brian Wilson]] through [[Soft systems methodology|Soft Systems Methodology]] (SSM) involving methods such as [[action research]] and emphasis of participatory designs. Where hard systems might be identified as more "scientific", the distinction between them is often elusive.
| |
− |
| |
− | George J. Klir maintained that no "classification is complete and perfect for all purposes", and defined systems as abstract, real, and conceptual physical systems, bounded and unbounded systems, discrete to continuous, pulse to hybrid systems, etc. The interactions between systems and their environments are categorized as relatively closed and open systems. It seems most unlikely that an absolutely closed system can exist or, if it did, that it could be known by man. Important distinctions have also been made between hard systems – technical in nature and amenable to methods such as systems engineering, operations research, and quantitative systems analysis – and soft systems that involve people and organisations, commonly associated with concepts developed by Peter Checkland and Brian Wilson through Soft Systems Methodology (SSM) involving methods such as action research and emphasis of participatory designs. Where hard systems might be identified as more "scientific", the distinction between them is often elusive.
| |
| | | |
| + | [[乔治 J.克莱尔 George J. Klir]]<ref>Klir, 1969, pp. 69–72</ref>认为出于任何目的都不存在“完备且完美的分类”,并将系统定义为抽象的、真实的和概念的[[物理系统 physical systems]]、有界的和[[无界的系统 unbounded system]]、离散的到连续的系统、脉冲的到[[混合系统 hybrid system|混合的系统 hybrid system]]等。系统与其环境之间的交互可分为相对封闭系统和[[开放系统 open systems]]。绝对封闭的系统似乎不太可能存在,即使存在,也不大可能为人所知。在“硬”系统和“软”系统之间也有重要的区别<ref>Checkland, 1997; Flood, 1999.</ref> ,“硬”系统在自然界是技术性的,可以适应诸如[[系统工程 systems engineering]]、[[运筹学]]和定量系统分析等方法,“软”系统涉及人和组织,通常与[[彼得·契克兰 Peter Checkland]]和 [[布莱恩·威尔逊 Brian Wilson (系统科学家)|布莱恩·威尔逊 Brian Wilson]]通过[[软系统方法论]](SSM)开发的概念相关,包括诸如[[行动研究 action research]]和强调参与式设计等方法。在硬系统可能被认为更“科学”的领域,两者的区别往往是模糊的。 |
| | | |
| | | |
| ===文化系统 Cultural system=== | | ===文化系统 Cultural system=== |
| | | |
− | 文化系统可定义为不同[[文化]]要素之间的相互作用。虽然文化系统与[[社会系统]]大不相同,有时两者会合在一起称为”社会文化系统”。社会科学的一个主要关注点是[[社会秩序|秩序问题]]。 | + | 文化系统可定义为不同[[文化]]要素之间的相互作用。虽然文化系统与[[社会系统]]大不相同,有时两者会合在一起称为”社会文化系统”。社会科学的一个主要关注点是秩序问题。 |
− | | |
− | A cultural system may be defined as the interaction of different elements of [[culture]]. While a cultural system is quite different from a [[social system]], sometimes both together are referred to as a "sociocultural system". A major concern of the social sciences is the [[Social order|problem of order]].
| |
− | | |
− | A cultural system may be defined as the interaction of different elements of culture. While a cultural system is quite different from a social system, sometimes both together are referred to as a "sociocultural system". A major concern of the social sciences is the problem of order.
| |
| | | |
| | | |
| ===经济系统 Economic system=== | | ===经济系统 Economic system=== |
| | | |
− | {{Main|Economic system}}
| + | 经济制度是一种机制([[社会制度 social institution]]),它处理特定社会中[[货品(经济) Good (economics)|货品 goods]]和[[服务(经济) Service (economics)|服务 services]]的[[经济生产 Economic production|生产 production]]、[[分配(商业) distribution (business)|分配 distribution]]和[[消费(经济) consumption (economics)|消费 consumption]]。经济体系由人、制度及其与资源的关系组成,如财产制度。它解决经济问题,例如资源的稀缺和分配。 |
| | | |
− | 经济制度是一种机制([[社会制度 social institution]]),它处理特定[[社会]]中[[货品(经济) Good (economics)|货品 goods]]和[[服务(经济) Service (economics)|服务 services]]的[[经济生产 Economic production|生产 production]]、[[分配(商业) distribution (business)|分配 distribution]]和[[消费(经济) consumption (economics)|消费 consumption]]。经济体系由[[人 person|人 people]]、[[制度 institutions]]及其与资源的关系组成,如[[财产 property]][[制度 Convention (norm)|制度 convention]]。它解决[[经济 economics]]问题,例如资源的稀缺和分配。
| |
− |
| |
− | An economic system is a mechanism ([[social institution]]) which deals with the [[Economic production|production]], [[distribution (business)|distribution]] and [[consumption (economics)|consumption]] of [[Good (economics)|goods]] and [[Service (economics)|services]] in a particular [[society]]. The economic system is composed of [[person|people]], [[institutions]] and their relationships to resources, such as the [[Convention (norm)|convention]] of [[property]]. It addresses the problems of [[economics]], like the allocation and scarcity of resources.
| |
| | | |
− | An economic system is a mechanism (social institution) which deals with the production, distribution and consumption of goods and services in a particular society. The economic system is composed of people, institutions and their relationships to resources, such as the convention of property. It addresses the problems of economics, like the allocation and scarcity of resources.
| + | 几位国际关系学者,尤其是[[Neorealism (新现实主义(国际关系) Neorealism (international relations)|新现实主义学派 neorealist school]]的学者,从系统的角度描述和分析了国家交流的国际范围。然而,这种国际分析的系统模式受到其他国际关系思想流派的挑战,其中最显著的是[[建构主义(国际关系) Constructivism (international relations)|建构主义学派 constructivist school]],该学派认为,过分关注系统和结构可能忽视个人在社会互动中的作用。基于系统的国际关系模型也是[[制度自由主义 Institutional liberalism|自由制度主义 liberal institutionalist]]思想学派国际视野的基础,该学派更加重视由规则和交互管制产生的系统,特别是经济管制所产生的系统。 |
− | | |
− | 几位国际关系学者,尤其是[[Neorealism (新现实主义(国际关系) Neorealism (international relations)|新现实主义学派 neorealist school]]的学者,从系统的角度描述和分析了互动国家的国际范围。然而,这种国际分析的系统模式受到其他国际关系思想流派的挑战,其中最显著的是[[建构主义(国际关系) Constructivism (international relations)|建构主义学派 constructivist school]],该学派认为,过分关注系统和结构可能忽视个人在社会互动中的作用。基于系统的国际关系模式也是[[制度自由主义 Institutional liberalism|自由制度主义 liberal institutionalist]]思想学派对国际领域见解的基底,该学派更加强调由规则和交互治理,特别是经济治理所产生的系统。 | |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】"互动国家的国际范围"改为“国家交流的国际范围”。
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】末句“基于系统的国际关系模式也是[[制度自由主义 Institutional liberalism|自由制度主义 liberal institutionalist]]思想学派对国际领域见解的基底,该学派更加强调由规则和交互治理,特别是经济治理所产生的系统。”改为“基于系统的国际关系模型也是[[制度自由主义 Institutional liberalism|自由制度主义 liberal institutionalist]]思想学派国际视野的基础,该学派更加重视由规则和交互管制产生的系统,特别是经济管制所产生的系统。”
| |
| | | |
− | The international sphere of interacting states is described and analysed in systems terms by several international relations scholars, most notably in the [[Neorealism (international relations)|neorealist school]]. This systems mode of international analysis has however been challenged by other schools of international relations thought, most notably the [[Constructivism (international relations)|constructivist school]], which argues that an over-large focus on systems and structures can obscure the role of individual agency in social interactions. Systems-based models of international relations also underlies the vision of the international sphere held by the [[Institutional liberalism|liberal institutionalist]] school of thought, which places more emphasis on systems generated by rules and interaction governance, particularly economic governance.
| |
− |
| |
− | The international sphere of interacting states is described and analysed in systems terms by several international relations scholars, most notably in the neorealist school. This systems mode of international analysis has however been challenged by other schools of international relations thought, most notably the constructivist school, which argues that an over-large focus on systems and structures can obscure the role of individual agency in social interactions. Systems-based models of international relations also underlies the vision of the international sphere held by the liberal institutionalist school of thought, which places more emphasis on systems generated by rules and interaction governance, particularly economic governance.
| |
| | | |
| ==系统概念的应用 Application of the system concept== | | ==系统概念的应用 Application of the system concept== |
| | | |
− | 系统建模是工程学和社会科学的基本原理。该系统是所关注实体的呈现。所以对系统上下文的包含或排除取决于建模者的意图。
| + | 系统建模是工程学和社会科学的基本原则。该系统是所关注实体的呈现。所以是否包含于系统环境取决于建模者的意图。 |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“系统建模是工程学和社会科学的基本原理。”改为“系统建模是工程学和社会科学的基本原则。”
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“所以对系统上下文的包含或排除取决于建模者的意图。”改为“所以是否包含于系统环境取决于建模者的意图。”
| |
− | Systems modeling is generally a basic principle in engineering and in social sciences. The system is the representation of the entities under concern. Hence inclusion to or exclusion from system context is dependent on the intention of the modeler.
| |
| | | |
− | Systems modeling is generally a basic principle in engineering and in social sciences. The system is the representation of the entities under concern. Hence inclusion to or exclusion from system context is dependent on the intention of the modeler.
| |
| | | |
| 任何模型都无法包括所关注现实系统的所有特征,也不必包括属于所关注现实系统的所有实体。 | | 任何模型都无法包括所关注现实系统的所有特征,也不必包括属于所关注现实系统的所有实体。 |
− |
| |
− | No model of a system will include all features of the real system of concern, and no model of a system must include all entities belonging to a real system of concern.
| |
− |
| |
− | No model of a system will include all features of the real system of concern, and no model of a system must include all entities belonging to a real system of concern.
| |
− |
| |
| | | |
| | | |
| ===信息和电脑科学方面 In information and computer science=== | | ===信息和电脑科学方面 In information and computer science=== |
| | | |
− | 在[[计算机科学 computer science]]和[[信息科学 information science]]中,“系统”是以[[组件(UML)Component (UML)|组件 components]]为结构,以可观察的[[进程间通信 inter-process communication]]为活动的硬件系统、[[软件系统 software system]]或组合。再举一些例子: 计算系统(如[[罗马数字 Roman numerals]])、各种系统归档文件、分类目录、各种图书馆系统(例如[[杜威十进制图书分类法 Dewey Decimal Classification]])。这仍然符合组件组合连接的定义(以利信息流)。
| + | 在计算机科学和信息科学中,“系统”是以组件(UML)为结构,以可观察的进程间通信为活动的硬件系统、软件系统或组合。再举一些例子: 计算系统(如罗马数字)、各种归档文件,分类的系统、各种图书馆系统(例如[[杜威十进制图书分类法 Dewey Decimal Classification]])。这仍然符合组件组合连接的定义(以利信息流)。<ref name=":0">{{Cite web|url=http://glossar.german-testing-board.info/|title=ISTQB Standard glossary of terms used in Software Testing|last=|first=|date=|website=|archive-url=|archive-date=|access-date=15 March 2019}}</ref> |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】"各种系统归档文件、分类目录、各种图书馆系统(例如[[杜威十进制图书分类法 Dewey Decimal Classification]])。"改为“各种归档文件,分类的系统、各种图书馆系统(例如[[杜威十进制图书分类法 Dewey Decimal Classification]])。”
| |
− | In [[computer science]] and [[information science]], '''system''' is a hardware system, [[software system]], or combination, which has [[Component (UML)|components]] as its structure and observable [[inter-process communication]]s as its behavior. Again, an example will illustrate: There are systems of counting, as with [[Roman numerals]], and various systems for filing papers, or catalogues, and various library systems, of which the [[Dewey Decimal Classification]] is an example. This still fits with the definition of components which are connected together (in this case to facilitate the flow of information).
| |
− | | |
− | In computer science and information science, system is a hardware system, software system, or combination, which has components as its structure and observable inter-process communications as its behavior. Again, an example will illustrate: There are systems of counting, as with Roman numerals, and various systems for filing papers, or catalogues, and various library systems, of which the Dewey Decimal Classification is an example. This still fits with the definition of components which are connected together (in this case to facilitate the flow of information).
| |
| | | |
− | 系统也可以指一个框架,即[[平台(计算) platform (computing)|平台 platform]],是设计用来允许软件程序运行的软件或硬件。组件或系统中的缺陷可能导致组件本身或整个系统无法执行其设计功能,例如错误的[[陈述(计算机科学) Statement (computer science)|陈述 statement]]或[[数据定义语言 Data definition language|数据定义 data definition]]。
| |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“系统也可以指一个框架,即[[平台(计算) platform (computing)|平台 platform]],是设计用来允许软件程序运行的软件或硬件。”改为“系统也可以指一个构架,亦称[[平台(计算) platform (computing)|平台 platform]],即为使软件程序运行打造的软件或硬件。”
| + | 系统也可以指一个构架,亦称平台,即为使软件程序运行打造的软件或硬件。组件或系统中的缺陷可能导致组件本身或整个系统无法执行其必需功能,例如错误的陈述或数据定义。 |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“组件或系统中的缺陷可能导致组件本身或整个系统无法执行其设计功能”改为“组件或系统中的缺陷可能导致组件本身或整个系统无法执行其必需功能。”
| |
− |
| |
− |
| |
− |
| |
− | System can also refer to a framework, aka [[platform (computing)|platform]], be it software or hardware, designed to allow software programs to run. A flaw in a component or system can cause the component itself or an entire system to fail to perform its required function, e.g., an incorrect [[Statement (computer science)|statement]] or [[Data definition language|data definition]] <ref name=":0">{{Cite web|url=http://glossar.german-testing-board.info/|title=ISTQB Standard glossary of terms used in Software Testing|last=|first=|date=|website=|archive-url=|archive-date=|access-date=15 March 2019}}</ref>
| |
− |
| |
− | System can also refer to a framework, aka platform, be it software or hardware, designed to allow software programs to run. A flaw in a component or system can cause the component itself or an entire system to fail to perform its required function, e.g., an incorrect statement or data definition
| |
| | | |
| ===工程和物理方面 In engineering and physics=== | | ===工程和物理方面 In engineering and physics=== |
| | | |
− | 在[[工程学 engineering]]和[[物理学 physics]]中,物理系统描述正在被研究的宇宙的一部分(例如[[热力学系统 thermodynamic system]])。工程学也有系统的概念,涉及到复杂项目的所有部分和部分之间的交互。系统工程是工程学的一个分支,研究如何规划、设计、实现、构建和维护这类的系统。预期[[结果 result]]是指以规格、特定条件<ref name=":0" />下的部件或系统、或其他渠道所预期的系统活动。
| + | 在工程学和物理学中,物理系统描述正在被研究的宇宙的一部分(例如[[热力学系统 thermodynamic system]])。工程学也有系统的概念,其系统指一个复杂项目的所有部分和各部分之间的交互。系统工程是工程学的一个分支,研究如何规划、设计、实现、构建和维护这类的系统。预期结果是以在特定条件组件或者系统的规格或另其他资源为基础预测的行为。<ref name=":0" /> |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“在[[工程学 engineering]]和[[物理学 physics]]中,物理系统描述正在被研究的宇宙的一部分(例如[[热力学系统 thermodynamic system]])。”改为“在[[工程学 engineering]]和[[物理学 physics]]领域,物理系统描述了正在被研究的宇宙的一部分([[热力学系统 thermodynamic system]]是一个主要范例)。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“工程学也有系统的概念,涉及到复杂项目的所有部分和部分之间的交互。”改为“工程学也有系统的概念,其系统指一个复杂项目的所有部分和各部分之间的交互。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“预期[[结果 result]]是指以规格、特定条件<ref name=":0" />下的部件或系统、或其他渠道所预期的系统活动。“改为“预期结果是以在特定条件组件或者系统的规格或另其他资源为基础预测的行为。”
| |
− |
| |
− | In [[engineering]] and [[physics]], a physical system is the portion of the universe that is being studied (of which a [[thermodynamic system]] is one major example). Engineering also has the concept of a system referring to all of the parts and interactions between parts of a complex project. [[Systems engineering]] is the branch of engineering that studies how this type of system should be planned, designed, implemented, built, and maintained. Expected [[result]] is the behavior predicted by the specification, or another source, of the component or system under specified conditions.<ref name=":0" />
| |
− |
| |
− | In engineering and physics, a physical system is the portion of the universe that is being studied (of which a thermodynamic system is one major example). Engineering also has the concept of a system referring to all of the parts and interactions between parts of a complex project. Systems engineering is the branch of engineering that studies how this type of system should be planned, designed, implemented, built, and maintained. Expected result is the behavior predicted by the specification, or another source, of the component or system under specified conditions.
| |
| | | |
| ===社会科学、认知科学及管理研究方面 In social and cognitive sciences and management research=== | | ===社会科学、认知科学及管理研究方面 In social and cognitive sciences and management research=== |
第237行: |
第143行: |
| 社会科学和[[认知科学 cognitive science]]识别人类模型和人类社会中的系统,主要有人类的大脑功能、心理过程,以及规范伦理学系统和社会/文化行为模式。 | | 社会科学和[[认知科学 cognitive science]]识别人类模型和人类社会中的系统,主要有人类的大脑功能、心理过程,以及规范伦理学系统和社会/文化行为模式。 |
| | | |
− | Social and [[cognitive science]]s recognize systems in human person models and in human societies. They include human brain functions and mental processes as well as normative ethics systems and social/cultural behavioral patterns.
| |
− |
| |
− | Social and cognitive sciences recognize systems in human person models and in human societies. They include human brain functions and mental processes as well as normative ethics systems and social/cultural behavioral patterns.
| |
− |
| |
− | [[管理科学 management science]]、[[运筹学 operations research]]和[[组织发展学 organizational development]](OD)把人类组织视为子系统或系统集合体等互动组件的'''系统'''(概念系统) ,该系统是众多复杂[[业务流程 business processes]]([[组织行为 organizational behavior]])和组织结构的载体。组织发展理论家[[彼得·圣吉 Peter Senge]]在他的《第五纪律》一书中提出了组织作为系统的概念。
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“[[管理科学 management science]]、[[运筹学 operations research]]和[[组织发展学 organizational development]](OD)把人类组织视为子系统或系统集合体等互动组件的'''系统'''(概念系统) ,该系统是众多复杂[[业务流程 business processes]]([[组织行为 organizational behavior]])和组织结构的载体。”改为“[[管理科学 management science]]、[[运筹学 operations research]]和[[组织发展学 organizational development]](OD)把人类组织视为亚系统或系统集合体等相互作用的元件的'''系统'''(概念系统) ,该系统是众多复杂[[商业过程 business processes]]([[组织行为 organizational behavior]])和组织结构的载体。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“组织发展理论家[[彼得·圣吉 Peter Senge]]在他的《第五纪律》一书中提出了组织作为系统的概念。”改为“组织发展理论家[[彼得·圣吉 Peter Senge]]在他的《第五纪律》一书中提出了将组织作为系统的观念。”
| |
− |
| |
− | In [[management science]], [[operations research]] and [[organizational development]] (OD), human organizations are viewed as '''systems''' (conceptual systems) of interacting components such as subsystems or system aggregates, which are carriers of numerous complex [[business processes]] ([[organizational behavior]]s) and organizational structures. Organizational development theorist [[Peter Senge]] developed the notion of organizations as systems in his book ''The Fifth Discipline''.
| |
− |
| |
− | In management science, operations research and organizational development (OD), human organizations are viewed as systems (conceptual systems) of interacting components such as subsystems or system aggregates, which are carriers of numerous complex business processes (organizational behaviors) and organizational structures. Organizational development theorist Peter Senge developed the notion of organizations as systems in his book The Fifth Discipline.
| |
− |
| |
− | [[系统思考 Systems thinking]]是一种思考/[[推理 reasoning]]和解决问题的方式,以识别问题的系统属性为始,可以是一种领导能力。有些人能在“放眼全球的同时,在当下采取行动”。他们会考虑其决定对大系统其他部分的潜在后果。这也是心理学上系统辅导的基础。
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“[[系统思考 Systems thinking]]是一种思考/[[推理 reasoning]]和解决问题的方式,以识别问题的系统属性为始,可以是一种领导能力。”改为“[[系统思考 Systems thinking]]是一种思考/[[推理 reasoning]]和解决问题的方式。它以识别特定问题的系统特性为始,也可以是一种领导能力。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“有些人能在“放眼全球的同时,在当下采取行动”。”改为“有些人能在局部行动的同时放眼全局。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“他们会考虑其决定对大系统其他部分的潜在后果。”改为“他们会考虑其决定对大系统其他部分造成的潜在后果。”
| |
− |
| |
− | [[Systems thinking]] is a style of thinking/[[reasoning]] and problem solving. It starts from the recognition of system properties in a given problem. It can be a leadership competency. Some people can ''think globally while acting locally''. Such people consider the potential consequences of their decisions on other parts of larger systems. This is also a basis of systemic coaching in psychology.
| |
| | | |
− | Systems thinking is a style of thinking/reasoning and problem solving. It starts from the recognition of system properties in a given problem. It can be a leadership competency. Some people can think globally while acting locally. Such people consider the potential consequences of their decisions on other parts of larger systems. This is also a basis of systemic coaching in psychology.
| + | 管理科学、运筹学和组织发展学把人类组织视为亚系统或系统集合体等相互作用的元件的'''系统'''(概念系统) ,该系统是众多复杂商业过程(组织行为)和组织结构的载体。组织发展理论家[[彼得·圣吉 Peter Senge]]在他的《第五纪律》一书中提出了组织作为系统的概念。 |
| | | |
− | [[组织研究 Organizational studies|组织理论家 Organizational theorists]],如[[玛格丽特·惠特利 Margaret Wheatley]],也描述了在新的隐喻背景下组织系统的工作,如[[量子物理学 quantum physics]],[[混沌理论 |chaos theory]],[[自组织系统 self-organizing systems|系统的自组织 self-organization of systems]]。
| |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】上述这段改为“如[[玛格丽特·惠特利 Margaret Wheatley]]这样的[[组织研究 Organizational studies|组织理论家 Organizational theorists]]也描述了在新隐喻背景下组织系统的工作,如[[量子物理学 quantum physics]],[[混沌理论 chaos theory|混沌理论 chaos theory]],[[自组织系统 self-organizing systems|系统的自组织 self-organization of systems]]。”
| + | [[系统思考 Systems thinking]]是一种思考/推理和解决问题的方式。它以识别特定问题的系统特性为始,也可以是一种领导能力。有些人能在局部行动的同时放眼全局。他们会考虑其决定对大系统其他部分造成的潜在后果。这也是心理学上系统辅导的基础。 |
| | | |
− | [[Organizational studies|Organizational theorists]] such as [[Margaret Wheatley]] have also described the workings of organizational systems in new metaphoric contexts, such as [[quantum physics]], [[chaos theory]], and the [[self-organizing systems|self-organization of systems]]. | + | 组织理论家,如[[玛格丽特·惠特利 Margaret Wheatley]],也描述了在新隐喻背景下组织系统的工作,如[[量子物理学 quantum physics]],[[混沌理论 chaos theory]],[[自组织系统 self-organizing systems]]。 |
| | | |
− | Organizational theorists such as Margaret Wheatley have also described the workings of organizational systems in new metaphoric contexts, such as quantum physics, chaos theory, and the self-organization of systems.
| |
| | | |
| ===纯粹逻辑系统 Pure logical systems=== | | ===纯粹逻辑系统 Pure logical systems=== |
| | | |
− | 还有所谓逻辑系统。最显著的例子是[[莱布尼兹 Leibniz]]和[[艾萨克・牛顿 Isaac Newton]]同时开发的微积分。另一个例子是[[乔治・布尔 George Boole]]的布尔运算符。其他的例子特别与哲学、生物学或认知科学有关。[[马斯洛的需求层次理论Maslow's hierarchy of needs ]]以纯粹逻辑将心理学应用于生物学。许多心理学家,包括[[卡尔・荣格 Carl Jung]]和[[西格蒙德·弗洛伊德 Sigmund Freud]],已经开发出一套系统,可以逻辑地组织心理学定义域,比如人格、动机、智力和欲望。这些定义域通常由一般范畴组成,这些范畴遵循一个[[推论 corollary]],例如[[定理 theorem]]。逻辑应用于[[一般分类学 taxonomy (general) |分类学 taxonomy]]、[[本体论 ontology]]、[[教育评估 educational assessment|评估 assessment]]和[[层次 hierarchies]]等类别。 | + | 还有所谓逻辑系统。最显著的例子是[[莱布尼兹 Leibniz]]和[[艾萨克・牛顿 Isaac Newton]]同时开发的微积分。另一个例子是[[乔治・布尔 George Boole]]的布尔运算符。其他的例子与哲学、生物学或认知科学特定相关。[[马斯洛的需求层次理论Maslow's hierarchy of needs ]]以纯粹逻辑将心理学应用于生物学。包括[[卡尔・荣格 Carl Jung]]和[[西格蒙德·弗洛伊德 Sigmund Freud]]许多心理学家已经开发出一套系统,可以富有逻辑地将心理学定义域组织起来,比如人格、动机、智力和欲望。这些定义域通常由一般范畴组成,这些范畴遵循一个推论,例如定理。逻辑应用于一般分类学 、[[本体论 ontology]]、[[教育评估 educational assessment]]和[[层次 hierarchies]]等类别。 |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】"其他的例子特别与哲学、生物学或认知科学有关。"改为“其他的例子与哲学、生物学或认知科学特定相关。”
| |
− | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“许多心理学家,包括[[卡尔・荣格 Carl Jung]]和[[西格蒙德·弗洛伊德 Sigmund Freud]],已经开发出一套系统,可以逻辑地组织心理学定义域,”改为“包括[[卡尔・荣格 Carl Jung]]和[[西格蒙德·弗洛伊德 Sigmund Freud]]的许多心理学家已经开发出一套系统,可以富有逻辑地将心理学定义域组织起来。”
| |
− | | |
− | There is also such a thing as a logical system. The most obvious example is the calculus developed simultaneously by [[Leibniz]] and [[Isaac Newton]]. Another example is [[George Boole]]'s Boolean operators. Other examples have related specifically to philosophy, biology, or cognitive science. [[Maslow's hierarchy of needs]] applies psychology to biology by using pure logic. Numerous psychologists, including [[Carl Jung]] and [[Sigmund Freud]] have developed systems which logically organize psychological domains, such as personalities, motivations, or intellect and desire. Often these domains consist of general categories following a [[corollary]] such as a [[theorem]]. Logic has been applied to categories such as [[taxonomy (general)|taxonomy]], [[ontology]], [[educational assessment|assessment]], and [[hierarchies]].
| |
| | | |
− | There is also such a thing as a logical system. The most obvious example is the calculus developed simultaneously by Leibniz and Isaac Newton. Another example is George Boole's Boolean operators. Other examples have related specifically to philosophy, biology, or cognitive science. Maslow's hierarchy of needs applies psychology to biology by using pure logic. Numerous psychologists, including Carl Jung and Sigmund Freud have developed systems which logically organize psychological domains, such as personalities, motivations, or intellect and desire. Often these domains consist of general categories following a corollary such as a theorem. Logic has been applied to categories such as taxonomy, ontology, assessment, and hierarchies.
| |
| | | |
| ===应用于战略思维 Applied to strategic thinking=== | | ===应用于战略思维 Applied to strategic thinking=== |
| | | |
− | 1988年,军事战略家[[约翰·A·沃登三世 John A. Warden III]]在他的书《空军战役》中介绍了[[沃登五环 Warden's Five Rings|五环系统 Five Ring System]]模型,认为任何复杂的系统都可分解为五个同心环。每个环节——领导力、流程、基础设施、人口和行动单位——都可用来在任何需要变革的系统中隔离关键元素。在[[第一次海湾战争 First Gulf War]]中<ref>{{cite book |last=Warden |first=John A. III |title=The Air Campaign: Planning for Combat |publisher=National Defense University Press |location=Washington, D.C. |date=1988 |isbn=978-1-58348-100-4 |authorlink=John A. Warden III}}</ref>,空军计划人员对该模型进行了有效利用。< ref > { cite book | last = Warden | first = John a. III | date = September 1995 | + | 1988年,军事战略家[[约翰·A·沃登三世 John A. Warden III]]在他的书《空军战役》中介绍了[[沃登五环 Warden's Five Rings|五环系统 Five Ring System]]模型,他主张每一个复杂的系统都可以被分解为五个同心环。每个环节——领导力、流程、基础设施、人口和行动单位——都可用来在每个需要变革的系统中隔离关键元素。在[[第一次海湾战争 First Gulf War]]中<ref>{{cite book |last=Warden |first=John A. III |title=The Air Campaign: Planning for Combat |publisher=National Defense University Press |location=Washington, D.C. |date=1988 |isbn=978-1-58348-100-4 |authorlink=John A. Warden III}}</ref>,空军计划人员对该模型进行了有效利用。<ref> { cite book | last = Warden | first = John a. III | date = September 1995|chapter=Chapter 4: Air theory for the 21st century|chapter-url=http://www.airpower.maxwell.af.mil/airchronicles/battle/chp4.html |accessdate=December 26, 2008 |title=Battlefield of the Future: 21st Century Warfare Issues |chapter-format=in ''Air and Space Power Journal''|publisher =United States Air Force}}</ref><ref>{{cite journal |last=Warden |first=John A. III |date=1995 |title=Enemy as a System |journal=Airpower Journal |volume=Spring |issue=9 |pages=40–55|url=http://www.airpower.maxwell.af.mil/airchronicles/apj/apj95/spr95_files/warden.htm |accessdate=2009-03-25 }}</ref> |
| | | |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“认为任何复杂的系统都可分解为五个同心环。”改为“他主张每一个复杂的系统都可以被分解为五个同心环。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“每个环节——领导力、流程、基础设施、人口和行动单位——都可用来在任何需要变革的系统中隔离关键元素。”改为“每个环节——领导力、流程、基础设施、人口和行动单位——都可用来在每个需要变革的系统中隔离关键元素。”
| |
− |
| |
− | --[[用户:Stefanie|Stefanie]]([[用户讨论:Stefanie |讨论]]) 【审校】“在[[第一次海湾战争 First Gulf War]]中<ref>{{cite book |last=Warden |first=John A. III |title=The Air Campaign: Planning for Combat |publisher=National Defense University Press |location=Washington, D.C. |date=1988 |isbn=978-1-58348-100-4 |authorlink=John A. Warden III}}</ref>,空军计划人员对该模型进行了有效利用。”改为“在[[第一次海湾战争 First Gulf War]]中<ref>{{cite book |last=Warden |first=John A. III |title=The Air Campaign: Planning for Combat |publisher=National Defense University Press |location=Washington, D.C. |date=1988 |isbn=978-1-58348-100-4 |authorlink=John A. Warden III}}</ref>,空军计划人员对有效利用了该模型。”
| |
− |
| |
− | In 1988, military strategist, [[John A. Warden III]] introduced the [[Warden's Five Rings|Five Ring System]] model in his book, ''The Air Campaign'', contending that any complex system could be broken down into five concentric rings. Each ring—Leadership, Processes, Infrastructure, Population and Action Units—could be used to isolate key elements of any system that needed change. The model was used effectively by Air Force planners in the [[First Gulf War]].<ref>{{cite book |last=Warden |first=John A. III |title=The Air Campaign: Planning for Combat |publisher=National Defense University Press |location=Washington, D.C. |date=1988 |isbn=978-1-58348-100-4 |authorlink=John A. Warden III}}</ref><ref>{{cite book |last=Warden |first=John A. III |date=September 1995
| |
− |
| |
− | In 1988, military strategist, John A. Warden III introduced the Five Ring System model in his book, The Air Campaign, contending that any complex system could be broken down into five concentric rings. Each ring—Leadership, Processes, Infrastructure, Population and Action Units—could be used to isolate key elements of any system that needed change. The model was used effectively by Air Force planners in the First Gulf War.<ref>{{cite book |last=Warden |first=John A. III |date=September 1995
| |
− |
| |
− |
| |
− | |chapter=Chapter 4: Air theory for the 21st century
| |
− |
| |
− | |chapter=Chapter 4: Air theory for the 21st century
| |
− |
| |
− | | 第四章: 21世纪的空气理论
| |
− |
| |
− | |chapter-url=http://www.airpower.maxwell.af.mil/airchronicles/battle/chp4.html |accessdate=December 26, 2008 |title=Battlefield of the Future: 21st Century Warfare Issues |chapter-format=in ''Air and Space Power Journal''
| |
− |
| |
− | |chapter-url=http://www.airpower.maxwell.af.mil/airchronicles/battle/chp4.html |accessdate=December 26, 2008 |title=Battlefield of the Future: 21st Century Warfare Issues |chapter-format=in Air and Space Power Journal
| |
− |
| |
− | 26,2008 | title = 未来的战场: 21世纪的战争问题 | chapter-format = in Air and Space Power Journal. | chapter-url = http://www.airpower.maxwell.af.mil/airchronicles/battle/chp4.html | accessdate = December 26,2008 | title = 未来的战场: 21世纪的战争问题 | chapter-format = in Air and Space Power Journal
| |
− |
| |
− | |publisher =United States Air Force}}</ref><ref>{{cite journal |last=Warden |first=John A. III |date=1995 |title=Enemy as a System |journal=Airpower Journal |volume=Spring |issue=9 |pages=40–55|url=http://www.airpower.maxwell.af.mil/airchronicles/apj/apj95/spr95_files/warden.htm |accessdate=2009-03-25 }}</ref> In the late
| |
− |
| |
| | | |
| 20世纪90年代末,Warden将他的模型应用于商业战略。<ref>{{cite book |last=Russell |first=Leland A. |author2=Warden, John A. |title=Winning in FastTime: Harness the Competitive Advantage of Prometheus in Business and in Life |publisher=GEO Group Press |location=Newport Beach, CA |date=2001 |isbn=0-9712697-1-8 }}</ref> | | 20世纪90年代末,Warden将他的模型应用于商业战略。<ref>{{cite book |last=Russell |first=Leland A. |author2=Warden, John A. |title=Winning in FastTime: Harness the Competitive Advantage of Prometheus in Business and in Life |publisher=GEO Group Press |location=Newport Beach, CA |date=2001 |isbn=0-9712697-1-8 }}</ref> |
− | |publisher =United States Air Force}}</ref> In the late 1990s, Warden applied his model to business strategy.
| |
− |
| |
− |
| |
− | 1990s, Warden applied his model to business strategy.<ref>{{cite book |last=Russell |first=Leland A. |author2=Warden, John A. |title=Winning in FastTime: Harness the Competitive Advantage of Prometheus in Business and in Life |publisher=GEO Group Press |location=Newport Beach, CA |date=2001 |isbn=0-9712697-1-8 }}</ref>
| |
| | | |
− | |publisher =United States Air Force}}</ref> In the late 1990s, Warden applied his model to business strategy.
| |
| | | |
− | ==参见 See also== | + | ==参见== |
| | | |
| {{Col-begin}} | | {{Col-begin}} |
第374行: |
第218行: |
| | | |
| {{Reflist}} | | {{Reflist}} |
| + | |
| | | |
| ==参考书目 Bibliography== | | ==参考书目 Bibliography== |
| | | |
| {{columns-list|colwidth=30em| | | {{columns-list|colwidth=30em| |
− |
| |
− | {{columns-list|colwidth=30em|
| |
− |
| |
− | { columns-list | colwidth = 30em |
| |
| | | |
| * Alexander Backlund (2000). "[https://www.emeraldinsight.com/doi/abs/10.1108/03684920010322055 The definition of system]". In: ''Kybernetes'' Vol. 29 nr. 4, pp. 444–451. | | * Alexander Backlund (2000). "[https://www.emeraldinsight.com/doi/abs/10.1108/03684920010322055 The definition of system]". In: ''Kybernetes'' Vol. 29 nr. 4, pp. 444–451. |
| | | |
− | * [[Kenneth D. Bailey (sociologist)|Kenneth D. Bailey]] (1994). ''Sociology and the New Systems Theory: Toward a Theoretical Synthesis''. New York: State of New York Press. | + | * Kenneth D. Bailey (1994). ''Sociology and the New Systems Theory: Toward a Theoretical Synthesis''. New York: State of New York Press. |
| | | |
− | * [[Bela H. Banathy]] (1997). [http://www.newciv.org/ISSS_Primer/asem04bb.html "A Taste of Systemics"], ISSS The Primer Project. | + | * Bela H. Banathy (1997). [http://www.newciv.org/ISSS_Primer/asem04bb.html "A Taste of Systemics"], ISSS The Primer Project. |
| | | |
− | * [[Walter F. Buckley]] (1967). '' Sociology and Modern Systems Theory'', New Jersey: Englewood Cliffs. | + | * Walter F. Buckley (1967). '' Sociology and Modern Systems Theory'', New Jersey: Englewood Cliffs. |
| | | |
− | * [[Peter Checkland]] (1997). ''Systems Thinking, Systems Practice''. Chichester: John Wiley & Sons, Ltd. | + | * Peter Checkland (1997). ''Systems Thinking, Systems Practice''. Chichester: John Wiley & Sons, Ltd. |
| | | |
− | * [[Michel Crozier]], Erhard Friedberg (1981). ''Actors and Systems'', Chicago University Press. | + | * Michel Crozier, Erhard Friedberg (1981). ''Actors and Systems'', Chicago University Press. |
| | | |
− | * [[Robert L. Flood]] (1999). ''[http://www.msbkwt.com/joomla/images/FILES2018-19/Library/E-Books/Rethinking-The-Fifth-Discipline.pdf Rethinking the Fifth Discipline: Learning within the unknowable]''. London: Routledge. | + | * Robert L. Flood (1999). ''[http://www.msbkwt.com/joomla/images/FILES2018-19/Library/E-Books/Rethinking-The-Fifth-Discipline.pdf Rethinking the Fifth Discipline: Learning within the unknowable]''. London: Routledge. |
| | | |
| * [[George J. Klir]] (1969). Approach to General Systems Theory, 1969. | | * [[George J. Klir]] (1969). Approach to General Systems Theory, 1969. |
第403行: |
第244行: |
| * Brian Wilson (2001). ''Soft Systems Methodology—Conceptual model building and its contribution'', J.H.Wiley. | | * Brian Wilson (2001). ''Soft Systems Methodology—Conceptual model building and its contribution'', J.H.Wiley. |
| | | |
− | * Beynon-Davies P. (2009). ''Business Information + Systems''. Palgrave, Basingstoke. {{ISBN|978-0-230-20368-6}} | + | * Beynon-Davies P. (2009). ''Business Information + Systems''. Palgrave, Basingstoke. |
− | | |
− | }}
| |
− | | |
| }} | | }} |
| | | |
− | }}
| |
| | | |
| | | |
− | | + | ==外部链接== |
− | ==外部链接 External links== | |
− | | |
− | <!--================================================================-->
| |
− | | |
− | <!--================================================================-->
| |
− | | |
− | <!--================================================================-->
| |
− | | |
− | <!-- Please follow Wikipedia policy on external links, 7 -->
| |
− | | |
− | <!-- Please follow Wikipedia policy on external links, 7 -->
| |
− | | |
− | < ! -- 请遵循维基百科的外部链接政策,7 -- >
| |
− | | |
− | <!-- which can be found on the page WP:EL -->
| |
− | | |
− | <!-- which can be found on the page WP:EL -->
| |
− | | |
− | < ! ——可以在页面 wp: el -- > 中找到
| |
− | | |
− | <!-- External links here should really apply -->
| |
− | | |
− | <!-- External links here should really apply -->
| |
− | | |
− | < ! -- 这里的外部链接应该真正应用 -- >
| |
− | | |
− | <!-- only specific to the subject "system". -->
| |
− | | |
− | <!-- only specific to the subject "system". -->
| |
− | | |
− | < ! -- 只针对主题“系统”。-->
| |
− | | |
− | <!-- Not appropriate links will sone turn into reverts. -->
| |
− | | |
− | <!-- Not appropriate links will sone turn into reverts. -->
| |
− | | |
− | < ! -- 不适当的链接会转变为回复。-->
| |
− | | |
− | <!--================================================================-->
| |
− | | |
− | <!--================================================================-->
| |
− | | |
− | <!--================================================================-->
| |
− | | |
− | {{Wiktionary}}
| |
− | | |
− | {{wikiquote}}
| |
| | | |
| * [http://www.physicalgeography.net/fundamentals/4b.html ''Definitions of Systems and Models''] by Michael Pidwirny, 1999–2007. | | * [http://www.physicalgeography.net/fundamentals/4b.html ''Definitions of Systems and Models''] by Michael Pidwirny, 1999–2007. |
第468行: |
第258行: |
| | | |
| | | |
| + | ---- |
| + | 本中文词条由[[用户:Dorr|Dorr]]翻译,[[用户:Stefanie|Stefanie]]审校,[[用户:薄荷|薄荷]]编辑欢迎在讨论页面留言。 |
| | | |
− | {{Systems engineering}}
| |
− |
| |
− | {{Systems}}
| |
− |
| |
− |
| |
− |
| |
− | {{Authority control}}
| |
− |
| |
− |
| |
− |
| |
− | [[Category:Systems|*]]
| |
− |
| |
− | *
| |
| | | |
− | *
| + | '''本词条内容源自公开资料,遵守 CC3.0协议。''' |
| | | |
− | <noinclude>
| |
| | | |
− | <small>This page was moved from [[wikipedia:en:System]]. Its edit history can be viewed at [[系统/edithistory]]</small></noinclude>
| |
| | | |
− | [[Category:待整理页面]] | + | [[Category:系统]] |