“熵增原理”的版本间的差异
(→历史) |
|||
第73行: | 第73行: | ||
循环过程中,如果能测量出因加热而增加的能量和其温度,那么通过对克劳修斯不等式进行积分,就能确定其过程是否可逆。 | 循环过程中,如果能测量出因加热而增加的能量和其温度,那么通过对克劳修斯不等式进行积分,就能确定其过程是否可逆。 | ||
− | == | + | == 证据 == |
− | |||
− | |||
− | |||
− | |||
− | |||
将克劳修斯不等式积分,其被积函数分母中的温度实际上是系统与之交换热量的外部热库的温度。注意热量传递过程的每个瞬间,系统都与外部热库接触。 | 将克劳修斯不等式积分,其被积函数分母中的温度实际上是系统与之交换热量的外部热库的温度。注意热量传递过程的每个瞬间,系统都与外部热库接触。 | ||
− | |||
− | |||
− | |||
− | |||
根据热力学第二定律,在系统和热库之间,每个无穷小的热交换过程中,其总体系熵的净变化为<math> dS_{Total}=dS_{Sys} +dS_{Res} \geq 0 </math>。 | 根据热力学第二定律,在系统和热库之间,每个无穷小的热交换过程中,其总体系熵的净变化为<math> dS_{Total}=dS_{Sys} +dS_{Res} \geq 0 </math>。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
当系统吸收无穷小的热量<math>\delta Q_{1}</math>(<math>\geq 0</math>)时,为了使此过程中的熵<math>dS_{Total_{1}}</math>的净变量为正,“热”库<math>T_{Hot}</math>的温度必须稍大于该时刻的系统温度。 | 当系统吸收无穷小的热量<math>\delta Q_{1}</math>(<math>\geq 0</math>)时,为了使此过程中的熵<math>dS_{Total_{1}}</math>的净变量为正,“热”库<math>T_{Hot}</math>的温度必须稍大于该时刻的系统温度。 | ||
− | |||
− | |||
− | |||
− | |||
如果系统温度在该时刻由<math>T_{1}</math>给出,则<math> dS_{Sys_{1}}=\frac{\delta Q_{1}}{T_{1}}</math>和<math>T_{Hot}\geq T_{1}</math>迫使我们具有: | 如果系统温度在该时刻由<math>T_{1}</math>给出,则<math> dS_{Sys_{1}}=\frac{\delta Q_{1}}{T_{1}}</math>和<math>T_{Hot}\geq T_{1}</math>迫使我们具有: | ||
第110行: | 第92行: | ||
:<math> -dS_{Res_{1}} =\frac{\delta Q_{1}}{T_{Hot}}\leq \frac{\delta Q_{1}}{T_{1}} = dS_{Sys_{1}} </math> | :<math> -dS_{Res_{1}} =\frac{\delta Q_{1}}{T_{Hot}}\leq \frac{\delta Q_{1}}{T_{1}} = dS_{Sys_{1}} </math> | ||
− | |||
− | |||
− | |||
− | |||
这意味着来自热库的熵“损失”的大小,即<math> |dS_{Res_{1}}|=\frac{\delta Q_{1}}{T_{Hot}} </math>小于了系统熵增加的大小<math>dS_{Sys_{1}}</math>(<math>\geq 0</math>): | 这意味着来自热库的熵“损失”的大小,即<math> |dS_{Res_{1}}|=\frac{\delta Q_{1}}{T_{Hot}} </math>小于了系统熵增加的大小<math>dS_{Sys_{1}}</math>(<math>\geq 0</math>): | ||
第119行: | 第97行: | ||
− | |||
− | |||
− | |||
类似地,当温度为<math>T_{2}</math>的系统在瞬间发生的过程内将热量<math>-\delta Q_{2}</math> (<math>\delta Q_{2}\leq 0</math>)排入较冷的热库(温度<math>T_{Cold}\leq T_{2}</math>)时,必须以同上完全相似的方式来满足热力学第二定律: | 类似地,当温度为<math>T_{2}</math>的系统在瞬间发生的过程内将热量<math>-\delta Q_{2}</math> (<math>\delta Q_{2}\leq 0</math>)排入较冷的热库(温度<math>T_{Cold}\leq T_{2}</math>)时,必须以同上完全相似的方式来满足热力学第二定律: | ||
第127行: | 第102行: | ||
:<math display="block"> -dS_{Res_{2}}=\frac{\delta Q_{2}}{T_{Cold}}\leq \frac{\delta Q_{2}}{T_{2}}= dS_{Sys_{2}} </math> | :<math display="block"> -dS_{Res_{2}}=\frac{\delta Q_{2}}{T_{Cold}}\leq \frac{\delta Q_{2}}{T_{2}}= dS_{Sys_{2}} </math> | ||
− | |||
− | |||
− | |||
− | |||
这里系统“吸收”的热量由<math>\delta Q_{2}</math>(<math>\leq 0</math>)给出,表示热量从系统传递到热库,且<math>dS_{Sys_{2}}\leq 0</math>。由热库获得的熵大小<math> dS_{Res_{2}}=\frac{|\delta Q_{2}|}{T_{cold}}</math>,大于系统熵损失的大小<math> |dS_{Sys_{2}}|</math>。 | 这里系统“吸收”的热量由<math>\delta Q_{2}</math>(<math>\leq 0</math>)给出,表示热量从系统传递到热库,且<math>dS_{Sys_{2}}\leq 0</math>。由热库获得的熵大小<math> dS_{Res_{2}}=\frac{|\delta Q_{2}|}{T_{cold}}</math>,大于系统熵损失的大小<math> |dS_{Sys_{2}}|</math>。 | ||
第136行: | 第107行: | ||
− | |||
− | |||
− | |||
由于系统在循环过程中熵总量不变,因此,如果将前面两个方程式表示的所有从热库吸收和排放的热,分解成无穷小的阶段再相加,然后在定义出每个时刻给定热库温度<math>T_{surr}</math>,可得出: | 由于系统在循环过程中熵总量不变,因此,如果将前面两个方程式表示的所有从热库吸收和排放的热,分解成无穷小的阶段再相加,然后在定义出每个时刻给定热库温度<math>T_{surr}</math>,可得出: | ||
第145行: | 第113行: | ||
:<math> -\oint dS_{Res}= \oint \frac{\delta Q}{T_{surr}}\leq \oint dS_{Sys}=0 </math> | :<math> -\oint dS_{Res}= \oint \frac{\delta Q}{T_{surr}}\leq \oint dS_{Sys}=0 </math> | ||
− | |||
− | |||
− | |||
− | |||
尤其是: | 尤其是: | ||
第155行: | 第119行: | ||
:<math>\oint \frac{\delta Q}{T_{surr}}\leq 0, </math> | :<math>\oint \frac{\delta Q}{T_{surr}}\leq 0, </math> | ||
− | |||
− | |||
− | |||
− | |||
得到了证明。 | 得到了证明。 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
综上所述,我们得出(下面第三条陈述中的不等式显然来自于热力学第二定律,这是我们计算的基础), | 综上所述,我们得出(下面第三条陈述中的不等式显然来自于热力学第二定律,这是我们计算的基础), | ||
第178行: | 第133行: | ||
− | |||
− | |||
− | |||
对于可逆循环过程,在每个无穷小的传热阶段中都不会产生熵,因此以下等式成立: | 对于可逆循环过程,在每个无穷小的传热阶段中都不会产生熵,因此以下等式成立: | ||
第188行: | 第140行: | ||
− | |||
− | |||
− | |||
因此,克劳修斯不等式是基于热力学第二定律并应用在热传递过程中每个无穷小阶段的结果,从某种意义上说,它是热力学第二定律的弱条件。 | 因此,克劳修斯不等式是基于热力学第二定律并应用在热传递过程中每个无穷小阶段的结果,从某种意义上说,它是热力学第二定律的弱条件。 | ||
− | |||
− | |||
== See also 其他参考资料 == | == See also 其他参考资料 == |
2021年1月19日 (二) 15:00的版本
此词条由Jie翻译
克劳修斯定理 Clausius theorem(1855)指出,对于 热力学系统 Thermodynamic system (例如,热机或热泵),当其与 外部热库External reservoirs进行热交换并经历 热力学循环Thermodynamic cycle时,
- [math]\displaystyle{ \oint \frac{\delta Q}{T_{\text{surr}}} \leq 0, }[/math]
其中[math]\displaystyle{ \delta Q }[/math]是系统从热库吸收的热量极小值,[math]\displaystyle{ T_{\text{surr}} }[/math]是特定时间点外部热库(周围环境)的温度。该表达式是指,沿着 热力学过程路径 Thermodynamic process path(从初始/最终状态到相同的初始/最终状态下)所执行的闭合积分。原则上,该闭合积分可以沿路径的任意点开始和结束。
如果存在有多个具有不同温度[math]\displaystyle{ \left(T_1,T_2, \cdots T_n\right) }[/math]的热库,则克劳修斯不等式为:
- [math]\displaystyle{ \oint \left(\frac{\delta Q_1}{T_1}+\frac{\delta Q_2}{T_2}+\cdots+\frac{\delta Q_n}{T_n}\right) \leq 0. }[/math]
当在过程可逆的特殊情况下,该等式成立[1] 。其可逆过程可用于引入 熵 Entropy 的 状态函数State function 。这是因为在循环过程中,状态函数的变化为零。换句话说, 克劳修斯表述Clausius statement指出,不可能构造出一种装置,使其仅仅将热从低温热库传递至高温热库而不引起其他变化[2]。相当于说,热量只能自发地从高温物体流向相对低温的物体,反向则不行。[3]
克劳修斯的广义不等式为[4] :
- [math]\displaystyle{ dS_{\text{sys}} \geq \frac{\delta Q}{T_{\text{surr}}} }[/math]
对于熵趋近于无穷小变化时,[math]\displaystyle{ S }[/math]不仅适用于循环过程,而且适用于封闭系统中发生的任何过程。
历史
克劳修斯定理是 热力学第二定律 Second law of thermodynamics的数学解释。它是由鲁道夫·克劳修斯 Rudolf Clausius提出的。他的目的是解释系统中的热量传递与系统熵及其周围环境之间的关系。当初他为了解释熵并定量表示熵,而逐步发展出了该公式。更直接地讲,该定理为我们提供了一种确定热循环过程是否可逆的方法,为理解热力学第二定律提供了一个定量公式。
Clausius是最早研究熵概念的人之一,甚至负责为其命名。关于现阶段“克劳修斯定理”的称呼最初出现在1862年Clausius的第六本回忆录《关于转换等价定理在定量物质内做功的应用》中。Clausius试图表达熵与通过加热(其热量表示为[math]\displaystyle{ δ''Q'' }[/math])进入系统的能量流之间的比例关系。在系统中,这种热能可以转化为功,并且功也可以通过循环过程转化为热。Clausius写道:“在一个循环过程中发生的所有转换的代数和只能小于零,或者说在极端情况下等于零。”也就是如下等式:
- [math]\displaystyle{ \oint \frac{\delta Q}{T} = 0 }[/math]
其中[math]\displaystyle{ 𝛿''Q'' }[/math]是由于加热而从外界流入系统的能量,[math]\displaystyle{ T }[/math]是吸收能量时该主体的绝对温度,该等式对于任何周期性且可逆的过程均成立。之后,[math]\displaystyle{ 进一步扩展并确定,对于任何可能可逆的或不可逆的周期性过程,必须满足以下关系,即“克劳修斯不等式”。
:\lt math\gt \oint \frac{\delta Q}{T_{surr}} \leq 0 }[/math]
于是现在明确了克劳修斯不等式和熵之间的必然联系。而其周期性过程中所增加的熵量[math]\displaystyle{ S }[/math]为:
- [math]\displaystyle{ \Delta S {{=}} \oint \frac{\delta Q}{T} }[/math]
如热力学第二定律所述,熵已经确定是一个状态函数:它仅取决于系统所处的状态,而不取决于系统传递热量的过程路径。这与通过加热(𝛿Q)和作功(𝛿W)增加的能量是不同的,后者随路径的变化而变化。因此,在循环过程中,无论其是可逆还是不可逆的,系统在循环开始时的熵必须等于循环结束时的熵,即[math]\displaystyle{ \Delta S=0 }[/math]。在不可逆的情况下,系统会产生熵,而且其提取的熵量会大于已添加的熵量[math]\displaystyle{ (\Delta S_{surr}\gt 0) }[/math],这样才能使系统回到其原始状态。而在循环过程可逆的情况下,系统则不会产生熵,其所添加熵的量等于其提取的量。
循环过程中,如果能测量出因加热而增加的能量和其温度,那么通过对克劳修斯不等式进行积分,就能确定其过程是否可逆。
证据
将克劳修斯不等式积分,其被积函数分母中的温度实际上是系统与之交换热量的外部热库的温度。注意热量传递过程的每个瞬间,系统都与外部热库接触。
根据热力学第二定律,在系统和热库之间,每个无穷小的热交换过程中,其总体系熵的净变化为[math]\displaystyle{ dS_{Total}=dS_{Sys} +dS_{Res} \geq 0 }[/math]。
当系统吸收无穷小的热量[math]\displaystyle{ \delta Q_{1} }[/math]([math]\displaystyle{ \geq 0 }[/math])时,为了使此过程中的熵[math]\displaystyle{ dS_{Total_{1}} }[/math]的净变量为正,“热”库[math]\displaystyle{ T_{Hot} }[/math]的温度必须稍大于该时刻的系统温度。
如果系统温度在该时刻由[math]\displaystyle{ T_{1} }[/math]给出,则[math]\displaystyle{ dS_{Sys_{1}}=\frac{\delta Q_{1}}{T_{1}} }[/math]和[math]\displaystyle{ T_{Hot}\geq T_{1} }[/math]迫使我们具有:
- [math]\displaystyle{ -dS_{Res_{1}} =\frac{\delta Q_{1}}{T_{Hot}}\leq \frac{\delta Q_{1}}{T_{1}} = dS_{Sys_{1}} }[/math]
这意味着来自热库的熵“损失”的大小,即[math]\displaystyle{ |dS_{Res_{1}}|=\frac{\delta Q_{1}}{T_{Hot}} }[/math]小于了系统熵增加的大小[math]\displaystyle{ dS_{Sys_{1}} }[/math]([math]\displaystyle{ \geq 0 }[/math]):
类似地,当温度为[math]\displaystyle{ T_{2} }[/math]的系统在瞬间发生的过程内将热量[math]\displaystyle{ -\delta Q_{2} }[/math] ([math]\displaystyle{ \delta Q_{2}\leq 0 }[/math])排入较冷的热库(温度[math]\displaystyle{ T_{Cold}\leq T_{2} }[/math])时,必须以同上完全相似的方式来满足热力学第二定律:
- [math]\displaystyle{ -dS_{Res_{2}}=\frac{\delta Q_{2}}{T_{Cold}}\leq \frac{\delta Q_{2}}{T_{2}}= dS_{Sys_{2}} }[/math]
这里系统“吸收”的热量由[math]\displaystyle{ \delta Q_{2} }[/math]([math]\displaystyle{ \leq 0 }[/math])给出,表示热量从系统传递到热库,且[math]\displaystyle{ dS_{Sys_{2}}\leq 0 }[/math]。由热库获得的熵大小[math]\displaystyle{ dS_{Res_{2}}=\frac{|\delta Q_{2}|}{T_{cold}} }[/math],大于系统熵损失的大小[math]\displaystyle{ |dS_{Sys_{2}}| }[/math]。
由于系统在循环过程中熵总量不变,因此,如果将前面两个方程式表示的所有从热库吸收和排放的热,分解成无穷小的阶段再相加,然后在定义出每个时刻给定热库温度[math]\displaystyle{ T_{surr} }[/math],可得出:
- [math]\displaystyle{ -\oint dS_{Res}= \oint \frac{\delta Q}{T_{surr}}\leq \oint dS_{Sys}=0 }[/math]
尤其是:
- [math]\displaystyle{ \oint \frac{\delta Q}{T_{surr}}\leq 0, }[/math]
得到了证明。
综上所述,我们得出(下面第三条陈述中的不等式显然来自于热力学第二定律,这是我们计算的基础),
- [math]\displaystyle{ \oint dS_{Res}\geq 0 }[/math]
- [math]\displaystyle{ \oint dS_{Sys}=0 }[/math] (as hypothesized)
- [math]\displaystyle{ \oint dS_{Total}=\oint dS_{Res}+\oint dS_{Sys}\geq 0 }[/math]
对于可逆循环过程,在每个无穷小的传热阶段中都不会产生熵,因此以下等式成立:
- [math]\displaystyle{ \oint \frac{\delta Q_{rev}}{T}=0. }[/math]
因此,克劳修斯不等式是基于热力学第二定律并应用在热传递过程中每个无穷小阶段的结果,从某种意义上说,它是热力学第二定律的弱条件。
See also 其他参考资料
- 开尔文-普朗克表述Kelvin-Planck statement
- 卡诺定理(热力学)Carnot's theorem (thermodynamics )
- 卡诺热机Carnot heat engine
- 熵的介绍Introduction to entropy
References 参考文献
- ↑ Clausius theorem at Wolfram Research
- ↑ Finn, Colin B. P. Thermal Physics. 2nd ed., CRC Press, 1993.
- ↑ Giancoli, Douglas C. Physics: Principles with Applications. 6th ed., Pearson/Prentice Hall, 2005.
- ↑ Mortimer, R. G. Physical Chemistry. 3rd ed., p. 120, Academic Press, 2008.
Further reading 拓展阅读
- Morton, A. S., and P.J. Beckett. Basic Thermodynamics. New York: Philosophical Library Inc., 1969. Print.
- Saad, Michel A. Thermodynamics for Engineers. Englewood Cliffs: Prentice-Hall, 1966. Print.
- Hsieh, Jui Sheng. Principles of Thermodynamics. Washington, D.C.: Scripta Book Company, 1975. Print.
- Zemansky, Mark W. Heat and Thermodynamics. 4th ed. New York: McGwaw-Hill Book Company, 1957. Print.
- Clausius, Rudolf. The Mechanical Theory of Heat. London: Taylor and Francis, 1867. eBook
- Morton, A. S., and P.J. Beckett. 热力学基础 Basic Thermodynamics . New York: Philosophical Library Inc., 1969. Print.
- Saad, Michel A. 工程热力学 Thermodynamics for Engineers . Englewood Cliffs: Prentice-Hall, 1966. Print.
- Hsieh, Jui Sheng. 热力学原理Principles of Thermodynamics . Washington, D.C.: Scripta Book Company, 1975. Print.
- Zemansky, Mark W. 热与热力学Heat and Thermodynamics . 4th ed. New York: McGwaw-Hill Book Company, 1957. Print.
- Clausius, Rudolf. 热力学理论The Mechanical Theory of Heat . London: Taylor and Francis, 1867. eBook
External links 相关链接
- Judith McGovern (2004-03-17). "Proof of Clausius's theorem". Archived from the original on July 19, 2011. Retrieved October 4, 2010.
- "The Clausius Inequality And The Mathematical Statement Of The Second Law" (PDF). Retrieved October 5, 2010.
- The Mechanical Theory of Heat (eBook). https://books.google.com/books?id=8LIEAAAAYAAJ. Retrieved December 1, 2011.
Judith McGovern (2004-03-17). " 克劳修斯定理的证明Proof of Clausius's theorem ". Archived from the original on July 19, 2011. Retrieved October 4, 2010.
" 克劳修斯不等式和热力学第二定律的数学表述The Clausius Inequality And The Mathematical Statement Of The Second Law " (PDF). Retrieved October 5, 2010.
热力学原理The Mechanical Theory of Heat (eBook). Retrieved December 1, 2011.
Category:Laws of thermodynamics
类别: 热力学定律
Category:Physics theorems
范畴: 物理学定理
This page was moved from wikipedia:en:Clausius theorem. Its edit history can be viewed at 熵增原理/edithistory