“周期点”的版本间的差异
第100行: | 第100行: | ||
* 给定周期点“x”,则在轨道 <math>\gamma_x</math>上的所有点都具有相同的素数周期 | * 给定周期点“x”,则在轨道 <math>\gamma_x</math>上的所有点都具有相同的素数周期 | ||
− | == | + | ==请参见== |
− | * [ | + | * [https://zh.wikipedia.org/wiki/%E6%9E%81%E9%99%90%E7%8E%AF 极限环]Limit cycle |
− | * [ | + | * [https://zh.wikipedia.org/wiki/%E6%9E%81%E9%99%90%E9%9B%86%E5%90%88 极限集合]Limit set |
− | * [ | + | * [https://en.wikipedia.org/wiki/Stable_manifold 稳定集] Stable set |
− | * [ | + | * [https://en.wikipedia.org/wiki/Sharkovsky%27s_theorem Sharkovsky定理]Sharkovsky's theorem |
− | * [ | + | * [https://en.wikipedia.org/wiki/Stationary_point 驻点] Stationary point |
− | * [ | + | * [https://en.wikipedia.org/wiki/Periodic_points_of_complex_quadratic_mappings 复杂二次映射的周期点]Periodic points of complex quadratic mappings |
− | |||
− | |||
− | + | ==参考文献== | |
− | + | <references /> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2021年1月22日 (五) 17:59的版本
此词条暂由彩云小译翻译,翻译字数共488,未经人工整理和审校,带来阅读不便,请见谅。 此词条由舒寒初步翻译。
在数学中,特别是在迭代函数和动力系统的研究领域中,函数的周期点是系统在一定次数的函数迭代或一定时间后返回的点。这里的迭代次数叫做周期。周期为1的周期点被称为不动点。
迭代函数
给定一个从集合[math]\displaystyle{ X }[/math]到自身的映射[math]\displaystyle{ f }[/math],
[math]\displaystyle{ f: X \to X, }[/math]
a point x in X is called periodic point if there exists an n so that
[math]\displaystyle{ X }[/math]中的点[math]\displaystyle{ x }[/math]称为周期点,如果存在一个[math]\displaystyle{ n }[/math]使
[math]\displaystyle{ \ f_n(x) = x }[/math]
where [math]\displaystyle{ f_n }[/math] is the nth iterate of f. The smallest positive integer n satisfying the above is called the prime period or least period of the point x. If every point in X is a periodic point with the same period n, then f is called periodic with period n (this is not to be confused with the notion of a periodic function).
其中[math]\displaystyle{ f_n }[/math]为[math]\displaystyle{ f }[/math]的第[math]\displaystyle{ n }[/math]次迭代。满足上述条件的最小正整数[math]\displaystyle{ n }[/math]称为点[math]\displaystyle{ x }[/math]的素数周期prime period或最小周期。如果[math]\displaystyle{ X }[/math]中的每一个点都是周期为[math]\displaystyle{ n }[/math]的周期点,那么[math]\displaystyle{ f }[/math]有周期性,周期为[math]\displaystyle{ n }[/math](这不能和周期函数的概念混淆)。
If there exist distinct n and m such that [math]\displaystyle{ f_n(x) = f_m(x) }[/math]
如果存在不同的[math]\displaystyle{ n }[/math]和[math]\displaystyle{ m }[/math]使:[math]\displaystyle{ f_n(x) = f_m(x) }[/math]
then x is called a preperiodic point. All periodic points are preperiodic.
那么[math]\displaystyle{ x }[/math]称为前周期点。所有周期点都是前周期点。
If f is a diffeomorphism of a differentiable manifold, so that the derivative [math]\displaystyle{ f_n^\prime }[/math] is defined, then one says that a periodic point is hyperbolic if
- [math]\displaystyle{ |f_n^\prime|\ne 1, }[/math]
如果[math]\displaystyle{ x }[/math]是微分流形的微分同胚,则定义了导数[math]\displaystyle{ f_n^\prime }[/math],如果:[math]\displaystyle{ |f_n^\prime|\ne 1, }[/math],那么[math]\displaystyle{ f }[/math]是双曲周期点,
that it is attractive if :[math]\displaystyle{ |f_n^\prime|\lt 1, }[/math]
如果:[math]\displaystyle{ |f_n^\prime|\lt 1, }[/math],则称周期点[math]\displaystyle{ f }[/math]为吸引子,
and it is repelling if:[math]\displaystyle{ |f_n^\prime|\gt 1. }[/math]
如果:[math]\displaystyle{ |f_n^\prime|\gt 1. }[/math],则称周期点[math]\displaystyle{ f }[/math]为排斥子。
If the dimension of the stable manifold of a periodic point or fixed point is zero, the point is called a source; if the dimension of its unstable manifold is zero, it is called a sink; and if both the stable and unstable manifold have nonzero dimension, it is called a saddle or saddle point.
如果周期点或不动点的稳定流形的维数为零,则称其为源点;如果不稳定流形的维数为零,则称其为汇点;如果稳定流形和不稳定流形都有非零维数,则称其为鞍点。
示例
A period-one point is called a fixed point.
周期为1的点也叫做不动点。
逻辑斯谛克映射函数表达式:
- [math]\displaystyle{ x_{t+1}=rx_t(1-x_t), \qquad 0 \leq x_t \leq 1, \qquad 0 \leq r \leq 4 }[/math]
exhibits periodicity for various values of the parameter r. For r between 0 and 1, 0 is the sole periodic point, with period 1 (giving the sequence 0, 0, 0, ..., which attracts all orbits). For r between 1 and 3, the value 0 is still periodic but is not attracting, while the value (r − 1) / r is an attracting periodic point of period 1. With r greater than 3 but less than 1 + 模板:Radic, there are a pair of period-2 points which together form an attracting sequence, as well as the non-attracting period-1 points 0 and (r − 1) / r. As the value of parameter r rises toward 4, there arise groups of periodic points with any positive integer for the period; for some values of r one of these repeating sequences is attracting while for others none of them are (with almost all orbits being chaotic).
参数[math]\displaystyle{ r }[/math]随着取值的不同,呈现周期性。对于介于0到1之间的[math]\displaystyle{ r }[/math],0是唯一的周期点,周期为1(给出了吸引所有轨道的序列0,0,0,... )。对于介于1到3之间的[math]\displaystyle{ r }[/math],值0仍然是周期性的,但不是吸引点,而该值是周期1的吸引周期点。当[math]\displaystyle{ r }[/math]大于3但小于1+时,存在一对周期2的点,它们共同构成一个吸引序列,非吸引周期1点为0。当参数[math]\displaystyle{ r }[/math]的值上升到4时,会出现周期为正的一组周期点;对于[math]\displaystyle{ r }[/math]的某些值,这些重复序列中的一个被吸引,而对于其他值,则没有一个被吸引(几乎所有的轨道都是混乱的)。
动力系统
Given a real global dynamical system (R, X, Φ) with X the phase space and Φ the evolution function,
给定一个连续时间的动力系统[math]\displaystyle{ (R,X,Φ) }[/math],其中[math]\displaystyle{ X }[/math]为相空间,[math]\displaystyle{ Φ }[/math]为状态转移函数,
[math]\displaystyle{ \Phi: \mathbb{R} \times X \to X }[/math]
a point x in X is called periodic with period t if there exists a t > 0 so that
如果存在 [math]\displaystyle{ t \gt =0 }[/math],则[math]\displaystyle{ X }[/math]中的点[math]\displaystyle{ x }[/math]称为周期为[math]\displaystyle{ t }[/math]的周期。因此
[math]\displaystyle{ \Phi(t, x) = x\, }[/math]
The smallest positive t with this property is called prime period of the point x.
具有此性质的最小正[math]\displaystyle{ t }[/math]称为点[math]\displaystyle{ x }[/math]的素数周期。
性质
- Given a periodic point x with period p, then [math]\displaystyle{ \Phi(t,x) = \Phi(t+p,x) }[/math] for all t in R
- 给定一个周期为“p”的周期点“x”,则对于[math]\displaystyle{ R }[/math]中所有[math]\displaystyle{ x }[/math]的[math]\displaystyle{ \Phi(t,x) = \Phi(t+p,x) }[/math]
- Given a periodic point x then all points on the orbit [math]\displaystyle{ \gamma_x }[/math] through x are periodic with the same prime period.
- 给定周期点“x”,则在轨道 [math]\displaystyle{ \gamma_x }[/math]上的所有点都具有相同的素数周期
请参见
- 极限环Limit cycle
- 极限集合Limit set
- 稳定集 Stable set
- Sharkovsky定理Sharkovsky's theorem
- 驻点 Stationary point
- 复杂二次映射的周期点Periodic points of complex quadratic mappings