学习树宽有限的贝叶斯网络对于精确的,可追溯的推理是必要的,因为最坏情况下的推理复杂度也只是树宽 k 的指数级(在指数时间假设下)。然而,作为图表的全局属性,它大大增加了学习过程的难度。在这种情况下,可以使用 K 树进行有效的学习。<ref>M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon. [http://papers.nips.cc/paper/6232-learning-treewidth-bounded-bayesian-networks-with-thousands-of-variables Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables.] In NIPS-16: Advances in Neural Information Processing Systems 29, 2016.</ref> | 学习树宽有限的贝叶斯网络对于精确的,可追溯的推理是必要的,因为最坏情况下的推理复杂度也只是树宽 k 的指数级(在指数时间假设下)。然而,作为图表的全局属性,它大大增加了学习过程的难度。在这种情况下,可以使用 K 树进行有效的学习。<ref>M. Scanagatta, G. Corani, C. P. de Campos, and M. Zaffalon. [http://papers.nips.cc/paper/6232-learning-treewidth-bounded-bayesian-networks-with-thousands-of-variables Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables.] In NIPS-16: Advances in Neural Information Processing Systems 29, 2016.</ref> |