第59行: |
第59行: |
| | | |
| ::<math>h(X_1, \ldots, X_n) = \sum_{i=1}^{n} h(X_i|X_1, \ldots, X_{i-1}) \leq \sum_{i=1}^{n} h(X_i)</math>. | | ::<math>h(X_1, \ldots, X_n) = \sum_{i=1}^{n} h(X_i|X_1, \ldots, X_{i-1}) \leq \sum_{i=1}^{n} h(X_i)</math>. |
− |
| |
− | <math>L=\int_{-\infty}^\infty g(x)\ln(g(x))\,dx-\lambda_0\left(1-\int_{-\infty}^\infty g(x)\,dx\right)-\lambda\left(\sigma^2-\int_{-\infty}^\infty g(x)(x-\mu)^2\,dx\right)</math>
| |
| | | |
| * Differential entropy is translation invariant, i.e. for a constant <math>c</math>.<ref name="cover_thomas" />{{rp|253}} | | * Differential entropy is translation invariant, i.e. for a constant <math>c</math>.<ref name="cover_thomas" />{{rp|253}} |
第80行: |
第78行: |
| | | |
| * In general, for a transformation from a random vector to another random vector with same dimension <math>\mathbf{Y}=m \left(\mathbf{X}\right)</math>, the corresponding entropies are related via | | * In general, for a transformation from a random vector to another random vector with same dimension <math>\mathbf{Y}=m \left(\mathbf{X}\right)</math>, the corresponding entropies are related via |
− |
| |
− | <math>g(x)=e^{-\lambda_0-1-\lambda(x-\mu)^2}</math>
| |
| | | |
| ::<math>h(\mathbf{Y}) \leq h(\mathbf{X}) + \int f(x) \log \left\vert \frac{\partial m}{\partial x} \right\vert dx</math> | | ::<math>h(\mathbf{Y}) \leq h(\mathbf{X}) + \int f(x) \log \left\vert \frac{\partial m}{\partial x} \right\vert dx</math> |
第93行: |
第89行: |
| * It can be negative. | | * It can be negative. |
| 它可以为负 | | 它可以为负 |
− | Let <math>X</math> be an exponentially distributed random variable with parameter <math>\lambda</math>, that is, with probability density function
| |
− |
| |
− | 设 x 是一个指数分布的随机变量,它的参数是 λ,也就是概率密度函数
| |
| | | |
| A modification of differential entropy that addresses these drawbacks is the '''relative information entropy''', also known as the Kullback–Leibler divergence, which includes an [[invariant measure]] factor (see [[limiting density of discrete points]]). | | A modification of differential entropy that addresses these drawbacks is the '''relative information entropy''', also known as the Kullback–Leibler divergence, which includes an [[invariant measure]] factor (see [[limiting density of discrete points]]). |