在满足以上要求的同时,将Kolmogorov-Smirnov统计量泛化为更高维度的一种方法是,在所有可能的排序中比较两个样本的累积分布函数,并从所得的K-S统计量中取最大。在''d'' 维数据中,有 2<sup>''d''</sup>−1个这样的排序。皮柯克 Peacock<ref name="Peacock">{{cite journal |author = Peacock J.A. |title = Two-dimensional goodness-of-fit testing in astronomy |journal = [[Monthly Notices of the Royal Astronomical Society]] |volume = 202 |issue = 3 |pages = 615–627 |year = 1983 |bibcode = 1983MNRAS.202..615P |doi=10.1093/mnras/202.3.615|doi-access = free }}</ref>得出了一种这样的变化量(有关3D版本,另请参见Gosset<ref>{{cite journal |author = Gosset E.|title = A three-dimensional extended Kolmogorov-Smirnov test as a useful tool in astronomy|journal = Astronomy and Astrophysics|volume = 188|issue = 1
+
|pages = 258–264|year = 1987|bibcode = 1987A&A...188..258G}}</ref> ),另一种由法萨诺 Fasano和弗朗切斯基尼 Franceschini得出<ref name="Fasano">{{cite journal |authors= Fasano, G., Franceschini, A. |year=1987 |title= A multidimensional version of the Kolmogorov–Smirnov test |journal= Monthly Notices of the Royal Astronomical Society |issn=0035-8711 |volume= 225 |pages= 155–170 |bibcode=1987MNRAS.225..155F |doi=10.1093/mnras/225.1.155|doi-access= free }}</ref>(有关比较和计算细节,请参见Lopes等人)。<ref name="Lopes">{{cite conference |authors= Lopes, R.H.C., Reid, I., Hobson, P.R. |title= The two-dimensional Kolmogorov–Smirnov test |conference= XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research |date= 23–27 April 2007 |location= Amsterdam, the Netherlands |url= http://dspace.brunel.ac.uk/bitstream/2438/1166/1/acat2007.pdf }}</ref>检测统计量的临界值可以通过仿真获取,但取决于联合分布中的依存关系结构。