“度分布”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第7行: 第7行:
 
==定义==
 
==定义==
  
网络中一个节点的度(有时会被误认为连通性)是该节点与其他节点的连接或边的数量。如果网络是有向的,它的边就可能沿着不同方向从一个节点指向另一个节点,那么这些节点们就会有两个不同的度,一个度表示入射边的数量,另一个度表示出射边的数量。
+
网络中一个节点的度(有时会被误认为连通性)是该节点与其他节点的连接或边的数量。如果网络是有向的,里面的边也会具有方向,从一个节点指向另一个节点,那么这些节点就会有两个度,一个度表示入射边的数量,另一个度表示出射边的数量,分别记为入度和出度。
  
  
度分布''P''(''k'')定义是:网络中度值为''k''的所有节点与总节点数量的分数比值,如果一个网络中有''n''个节点,且其中''n<sub>k</sub>''个节点的度值为''k'',那么 ''P''(''k'') = ''n''<sub>''k''</sub>/''n''
+
度分布''P''(''k'')定义是:网络中度值为''k''的所有节点与总节点数量的分数比值,如果一个网络中有''n''个节点,且其中''n<sub>k</sub>''个节点的度值为''k'',那么 ''P''(''k'') = ''n''<sub>''k''</sub>/''n''。度分布就是P(k)的整体分布。类似的,对于有向网络也可以定义出度分布和入度分布。
  
  
度分布的定义也可以用'''<font color="#ff8000">累积度分布函数 Cumulative Degree Distribution</font>'''(随机选择一个节点,其度值小于k的概率)的形式来表示,或是用'''<font color="#ff8000">互补累积度分布函数 Complementary Cumulative Degree Distribution</font>'''(如果把''C''看作累积度分布,那么该函数为度大于或等于''k'' (1 - ''C'')的节点比例)的形式表示,这一定义与积累度分布互补。
+
度分布的定义也可以用累积度分布Cumulative Degree Distribution(位置<math>k</math>的累积度分布的值表示网络中度值小于或等于<math>k</math>的概率)的形式来表示,也可以用互补累积度分布Complementary Cumulative Degree Distribution或者逆累积度分布(<math>k</math>处的互补累积度分布的值表示网络中度值大于<math>k</math>的概率)的形式表示,此分布与积累度分布互补。
  
 
<br>
 
<br>
 
== 观察度分布 ==
 
== 观察度分布 ==
  
度分布无论是在研究真实网络(如互联网和社会网络)中还是在理论网络中都非常重要。以最简单的网络模型([[ER模型]])[[随机图 Random graph]]为例,它的每''n''个节点都以概率''p'' (或1 − ''p'')独立连接(或不独立连接) ,其中'''<font color="#ff8000">二项分布 Binomial Distribution</font>'''的度值为''k'':
 
  
 +
无论是在研究真实网络(如互联网和社会网络)还是在理论网络, 度分布都极为重要。以最简单的网络模型——[[随机图]]([[ER模型]])为例,该网络中的<math>n</math>个节点中任意两个节点之间以概率<math>p</math>连接,以概率<math>p</math>不连接,它们之间为独立事件。整个网络的度服从[[二项分布]],其中度值为<math>k</math>的概率为:
  
 
:<math>
 
:<math>
第26行: 第26行:
  
  
(即使平均度<math>\langle k\rangle=p(n-1)</math>保持不变,也会出现有限节点的泊松分布)。现实世界中的大多数网络的度分布却往往与上述分布非常不同,它们的大多数节点是高度右倾的,这就意味着这些节点的度值较低,但少数节点,即所谓的“'''枢纽'''” ,度值较高。一些网络,尤其是互联网、万维网和一些社交网络,被认为具有近似遵循[[幂律分布 power law]]:
+
(当<math>n</math>无限大,平均度为<math>⟨k⟩=p(n−1)</math>保持有限时,该二项分布可近似为泊松分布)。
 +
 
 +
但现实世界中的大多数网络的度分布却与上述分布非常不同,它们大多数是高度右偏的,这就意味着网络中的大量节点的度值较低,但少数节点,即所谓的“枢纽”,度值很高。一些网络,尤其是互联网、万维网和一些社交网络,其度分布被认为近似遵循[[幂律分布]] power law:
  
  
第34行: 第36行:
  
  
其中γ是一个常数。这种网络被称为'''[[无标度网络 Scale-free network]]''',它因其结构和动力学性质而引起人们的重视。<ref name="BA">{{cite journal | last=Barabási | first=Albert-László | last2=Albert | first2=Réka | title=Emergence of Scaling in Random Networks | journal=Science | volume=286 | issue=5439 | date=1999-10-15 | issn=0036-8075 | doi=10.1126/science.286.5439.509 | pages=509–512| pmid=10521342 | arxiv=cond-mat/9910332 | bibcode=1999Sci...286..509B }}</ref><ref name="AB">{{cite journal | last=Albert | first=Réka | last2=Barabási | first2=Albert-László | title=Topology of Evolving Networks: Local Events and Universality | journal=Physical Review Letters | volume=85 | issue=24 | date=2000-12-11 | issn=0031-9007 | doi=10.1103/physrevlett.85.5234 | pages=5234–5237| pmid=11102229 | arxiv=cond-mat/0005085 | bibcode=2000PhRvL..85.5234A | hdl=2047/d20000695 | url=https://repository.library.northeastern.edu/files/neu:331099/fulltext.pdf }}</ref><ref name="Doro">{{cite journal | last=Dorogovtsev | first=S. N. | last2=Mendes | first2=J. F. F. | last3=Samukhin | first3=A. N. | title=Size-dependent degree distribution of a scale-free growing network | journal=Physical Review E | volume=63 | issue=6 | date=2001-05-21 | issn=1063-651X | doi=10.1103/physreve.63.062101 | page=062101| pmid=11415146 |arxiv=cond-mat/0011115| bibcode=2001PhRvE..63f2101D }}</ref><ref name="PSY">{{cite journal|title=Scale-free behavior of networks with the copresence of preferential and uniform attachment rules|journal=Physica D: Nonlinear Phenomena|year=2018|first=Angelica |last=Pachon |first2=Laura |last2=Sacerdote |first3=Shuyi |last3=Yang |volume=371|pages=1–12|doi=10.1016/j.physd.2018.01.005|arxiv=1704.08597|bibcode=2018PhyD..371....1P}}</ref>然而,最近有一些基于真实数据的研究表明,尽管大多数观测到的网络具有'''<font color="#ff8000">厚尾分布 Fat-Tailed Degree Distributions</font>''',但它们无标度分布的特点并不明显。<ref>{{Cite journal|last=Holme|first=Petter|date=2019-03-04|title=Rare and everywhere: Perspectives on scale-free networks|journal=Nature Communications|language=en|volume=10|issue=1|pages=1016|doi=10.1038/s41467-019-09038-8|issn=2041-1723|pmc=6399274|pmid=30833568|bibcode=2019NatCo..10.1016H}}</ref>  
+
其中<math>γ</math>是一个常数,被称为幂律指数。这种网络被称为'''[[无标度网络 Scale-free network]]''',它因其特殊的结构和动力学性质而引起人们的关注。<ref name="BA">{{cite journal | last=Barabási | first=Albert-László | last2=Albert | first2=Réka | title=Emergence of Scaling in Random Networks | journal=Science | volume=286 | issue=5439 | date=1999-10-15 | issn=0036-8075 | doi=10.1126/science.286.5439.509 | pages=509–512| pmid=10521342 | arxiv=cond-mat/9910332 | bibcode=1999Sci...286..509B }}</ref><ref name="AB">{{cite journal | last=Albert | first=Réka | last2=Barabási | first2=Albert-László | title=Topology of Evolving Networks: Local Events and Universality | journal=Physical Review Letters | volume=85 | issue=24 | date=2000-12-11 | issn=0031-9007 | doi=10.1103/physrevlett.85.5234 | pages=5234–5237| pmid=11102229 | arxiv=cond-mat/0005085 | bibcode=2000PhRvL..85.5234A | hdl=2047/d20000695 | url=https://repository.library.northeastern.edu/files/neu:331099/fulltext.pdf }}</ref><ref name="Doro">{{cite journal | last=Dorogovtsev | first=S. N. | last2=Mendes | first2=J. F. F. | last3=Samukhin | first3=A. N. | title=Size-dependent degree distribution of a scale-free growing network | journal=Physical Review E | volume=63 | issue=6 | date=2001-05-21 | issn=1063-651X | doi=10.1103/physreve.63.062101 | page=062101| pmid=11415146 |arxiv=cond-mat/0011115| bibcode=2001PhRvE..63f2101D }}</ref><ref name="PSY">{{cite journal|title=Scale-free behavior of networks with the copresence of preferential and uniform attachment rules|journal=Physica D: Nonlinear Phenomena|year=2018|first=Angelica |last=Pachon |first2=Laura |last2=Sacerdote |first3=Shuyi |last3=Yang |volume=371|pages=1–12|doi=10.1016/j.physd.2018.01.005|arxiv=1704.08597|bibcode=2018PhyD..371....1P}}</ref>然而,最近有一个基于广泛真实数据的综合性研究认为,如果用严格的统计方法,[[无标度网络]]实际上是稀有的。<ref>{{Cite journal|last=Holme|first=Petter|date=2019-03-04|title=Rare and everywhere: Perspectives on scale-free networks|journal=Nature Communications|language=en|volume=10|issue=1|pages=1016|doi=10.1038/s41467-019-09038-8|issn=2041-1723|pmc=6399274|pmid=30833568|bibcode=2019NatCo..10.1016H}}</ref>  
  
 
<br>
 
<br>
 +
 +
 +
一些研究人员对这些发现提出了异议,认为研究中使用的定义过于严格,[6] 其他人则认为,确定度分布的精确函数形式不必要,只需要知道度分布是否为厚尾分布就好。[7]对度分布的特定形式的过度解释也受到批评,因为它没有考虑网络如何随时间演化。
 +
 +
  
 
== 超额度分布 ==
 
== 超额度分布 ==
  
'''<font color="#ff8000">超额度分布 Excess Degree Distribution</font>'''的定义是:沿着一条边到达该节点的其他边的数量的概率分布。<ref name=":0">{{Cite book|last=Newman|first=Mark|url=http://www.oxfordscholarship.com/view/10.1093/oso/9780198805090.001.0001/oso-9780198805090|title=Networks|date=2018-10-18|publisher=Oxford University Press|isbn=978-0-19-880509-0|volume=1|language=en|doi=10.1093/oso/9780198805090.001.0001}}</ref>换句话说,它是通过跟随链接从一个节点到达的其传出链接的分布。
+
'''<font color="#ff8000">余度分布 Excess Degree Distribution</font>'''的定义是:沿着任意一条边到达某个节点,这个节点其他边的数量的概率分布。<ref name=":0">{{Cite book|last=Newman|first=Mark|url=http://www.oxfordscholarship.com/view/10.1093/oso/9780198805090.001.0001/oso-9780198805090|title=Networks|date=2018-10-18|publisher=Oxford University Press|isbn=978-0-19-880509-0|volume=1|language=en|doi=10.1093/oso/9780198805090.001.0001}}</ref>换句话说,它是随链接进入一个节点后出去的边数的分布。
 +
 
 +
 
  
 
假设一个网络具有度分布<math>P(k)</math>,通过选择一个节点(随机或非随机)跟随它的一个邻近点(假设至少有一个邻近点),那么该节点具有<math>k</math> 个邻近点的概率不是由<math>P(k)</math>.给出的。造成这一结果的原因在于,无论何时在异质网络中选择某个节点,它都更有可能通过跟随该节点的某个现有邻点到达枢纽节点。这些节点具有度<math>k</math>的真实概率是<math>q(k)</math>,它被称为该节点的'''超额度'''。在'''<font color="#ff8000">配置模型 Configuration Model</font>'''中,忽略节点之间的相关性,并假定每个节点以相同的概率连接到网络中的其他任何节点,超额度分布表示为:
 
假设一个网络具有度分布<math>P(k)</math>,通过选择一个节点(随机或非随机)跟随它的一个邻近点(假设至少有一个邻近点),那么该节点具有<math>k</math> 个邻近点的概率不是由<math>P(k)</math>.给出的。造成这一结果的原因在于,无论何时在异质网络中选择某个节点,它都更有可能通过跟随该节点的某个现有邻点到达枢纽节点。这些节点具有度<math>k</math>的真实概率是<math>q(k)</math>,它被称为该节点的'''超额度'''。在'''<font color="#ff8000">配置模型 Configuration Model</font>'''中,忽略节点之间的相关性,并假定每个节点以相同的概率连接到网络中的其他任何节点,超额度分布表示为:
 +
 +
  
  
第50行: 第61行:
  
  
这里<math>{\langle k \rangle}</math>是模型的平均度。由此可知,任何节点的邻近点的平均度大于该节点的平均度。推广到在社交网络络中,这意味着你的朋友平均比你拥有更多的朋友。这就是著名的'''<font color="#ff8000">友谊悖论 Friendship Paradox</font>'''。可以证明,如果一个网络的平均超额度大于1,那么它可以有一个巨大的联通子网络:
+
这里<math>{\langle k \rangle}</math>是模型的平均度。由此可知,任意节点的邻居的平均度会大于该节点的平均度。推广到在社交网络络中,这意味着你的朋友平均比你拥有更多的朋友。这就是著名的'''<font color="#ff8000">朋友悖论 Friendship Paradox</font>'''。可以证明,如果一个网络的平均超额度大于1,那么它可以有一个巨大的联通分支:
 
 
  
 
:<math>
 
:<math>
第58行: 第68行:
  
  
要注意的是,最后两个方程只适用于配置模型,想要准确推导出实词网络的超额度分布,还应考虑度相关性。
+
要注意的是,以上两个方程只适用于配置模型,想要准确得到现实世界的网络中的余度分布,还应考虑网络中的度-度相关性。
  
 
<br>
 
<br>
第64行: 第74行:
 
== 函数生成方法 ==
 
== 函数生成方法 ==
  
生成函数可以用来计算随机网络的不同性质。给定某些网络的度分布和超度分布,<math>P(k)</math> <math>q(k)</math>可以以下列形式写出两个幂级数:
+
生成函数可以用来计算随机网络的不同性质。分别给定某些网络的度分布<math>P(k)</math>和余度分布<math>q(k)</math>,可以以下列形式写出两个幂级数:
 
 
  
 
:<math>
 
:<math>
第82行: 第91行:
  
  
如果已知生成函数的一个概率分布,我们就能通过运算检验得到<math>P(k)</math>的值:
+
如果已知概率分布<math>P(k)</math>的生成函数,我们可以通过对其微分重新得到<math>P(k)</math>
 
 
  
 
:<math>
 
:<math>
第89行: 第97行:
 
</math>
 
</math>
  
 
+
一些性质,如一些矩,然后,可以很容易地进行计算依据<math>G_0(x)</math> 和它的导数:
一些性质,例如,即时性。然后,可以很容易地进行计算依据<math>G_0(x)</math> 和它的导数:
 
  
  
第101行: 第108行:
  
  
一般来说:
+
更一般的,有:
 
 
  
 
:<math>
 
:<math>
第109行: 第115行:
  
  
对于泊松分布的随机网络,如[[ER随机图]],<math>G_1(x) = G_0(x) </math>这就是这种类型的随机网络理论特别简单的原因。第一和第二邻近点的概率分布是由函数<math>G_0(x)</math> 和<math>G0(G1(x))</math>生成的。进一步扩展,<math>m</math>-th的邻近点的分布是由以下几个因素产生的:
 
  
 +
对于服从泊松分布的随机网络,如[[ER随机图]],<math>G_1(x) = G_0(x) </math>就是这种类型的随机网络理论特别简单的原因。一阶和二阶近邻的概率分布由函数<math>G_0(x)</math> 和<math>G0(G1(x))</math>生成。进一步扩展,<math>m</math>阶近邻的概率分布由如下式子得到:
 +
 +
 +
:<math>G_0\bigl(G_1(...G_1(x)...)\bigr) </math>
  
:<math>G_0\bigl(G_1(...G_1(x)...)\bigr) </math>, 以<math>m-1 </math> 迭代到 <math>G_1 </math> 函数本身。
+
其中的 <math>G_1 </math> 函数作用到自身(递归调用)31次。
第一邻边内点的平均数量<math>c_1</math>是<math>{\langle k \rangle} = {dG_0(x)\over dx}|_{x=1}</math> 第二邻边内点的平均数量是:<math>c_2 = \biggl[ {d\over dx}G_0\big(G_1(x)\big)\biggl]_{x=1} = G_1'(1)G'_0\big(G_1(1)\big) =  G_1'(1)G'_0(1) = G''_0(1)</math>
+
 
 +
一阶近邻的平均数量c1就是<math>c_1</math>是<math>{\langle k \rangle} = {dG_0(x)\over dx}|_{x=1}</math> 二阶近邻的平均数量是:<math>c_2 = \biggl[ {d\over dx}G_0\big(G_1(x)\big)\biggl]_{x=1} = G_1'(1)G'_0\big(G_1(1)\big) =  G_1'(1)G'_0(1) = G''_0(1)</math>
  
 
<br>
 
<br>
第122行: 第132行:
 
图1:维基百科超链接图(对数尺度)的入/出度分布]]
 
图1:维基百科超链接图(对数尺度)的入/出度分布]]
  
在有向网络中,每个节点都有一些入度<math>k_{in}</math> 和一些出度<math>k_{out}</math>,分别指代指向该节点的边的数量和从该节点指出的边的数量。如果 <math>P(k_{in}, k_{out})</math> 是一个随机选择的具有入出度的节点的可能性。那么分配给这个生成函数的'''<font color="#ff8000">联合概率分布  Joint Probability Distribution</font>'''可以被写成两个变量 <math>x</math> 和 <math>y</math>  
+
 
 +
 
 +
在有向网络中,每个节点都有相应的入度<math>k_{in}</math> 和出度<math>k_{out}</math>,分别表示指向该节点的边的数量和从该节点指出的边的数量。若用 <math>P(k_{in}, k_{out})</math>表示随机挑选一个节点,其入度为<math>k_{in}</math>出度为<math>k_{out}</math>的概率,则对应于这个联合概率分布的生成函数可以写成含有两个变量<math>x</math>和 <math>y</math> 的形式:
  
  
第130行: 第142行:
  
  
由于有向网络中的每个链路必须离开某个节点并进入另一个节点,因此进入一个节点的链路的净平均数是零。所以,
+
由于有向网络中的每条边必须离开某个节点并进入另一个节点,因此净进入一个节点平均边数是零,即
 
 
  
 
:<math>
 
:<math>
第145行: 第156行:
 
</math>
 
</math>
  
<math>c</math>是网络中节点的平均度(内部和外部);<math>\langle{k_{in}}\rangle = \langle{k_{out}}\rangle = c.</math>
+
<math>c</math>是网络中节点的平均度(出度和入度);<math>\langle{k_{in}}\rangle = \langle{k_{out}}\rangle = c.</math>
 
 
  
使用函数<math>\mathcal{G}(x,y)</math>我们可以再次找到入/出度分布和入/出超量度分布的生成函数。可以将<math>G^{in}_0(x) </math>设为一个随机选择的节点上到达的链接数的生成函数,以及 <math>G^{in}_1(x)</math>可以设为按照随机选择的链接到达一个节点的到达链接数。我们也可以构造函数 <math>G^{out}_0(y)</math> 和 <math>G^{out}_1(y)</math>表示离开节点的边的数量:
+
基于函数<math>\mathcal{G}(x,y)</math>,类似于与前面所述,我们可以得到入/出度分布和入/出的余度分布的生成函数。<math>G^{in}_0(x) </math>可以定义为一个随机选择节点上所到达边数的生成函数, <math>G^{in}_1(x)</math>可定义为随机选择的边指向的节点的到达边数的生成函数。我们也可以定义 <math>G^{out}_0(y)</math> 和 <math>G^{out}_1(y)</math>表示离开节点的边的数量的生成函数:
  
 
* <math>
 
* <math>
第164行: 第174行:
  
  
这里,第一邻边内点的平均数量<math>c</math>,或者像之前表示的<math>c_1</math>是<math> {\partial \mathcal{G}\over\partial x}\biggl \vert _{x,y=1} =  {\partial \mathcal{G}\over\partial y}\biggl \vert _{x,y=1}</math>从一个随机选择的节点上可达到的第二邻边内的点的平均数是<math>c_2 = G_1'(1)G'_0(1) ={\partial^2 \mathcal{G}\over\partial x\partial y}\biggl \vert _{x,y=1}</math>. 这些是从随机选择的节点所达到第一和第二邻近点的数量,因为这些方程显然是在<math>x</math>和 <math>y</math>上对称的。
+
 
 +
这里,一阶近邻的平均数量<math>c_1</math>是<math> {\partial \mathcal{G}\over\partial x}\biggl \vert _{x,y=1} =  {\partial \mathcal{G}\over\partial y}\biggl \vert _{x,y=1}</math>(公式里面增加=c),随机选择一个节点的二阶近邻的平均数量为<math>c_2 = G_1'(1)G'_0(1) ={\partial^2 \mathcal{G}\over\partial x\partial y}\biggl \vert _{x,y=1}</math>。 这些也可以分别表示通过指向的边来到某一个节点的一阶近邻和二阶近邻的平均数量,因为这些方程显然是在<math>x</math>和<math>y</math>上对称的。
  
 
<br>
 
<br>
 +
== 符号网络的度分布 ==
 +
 +
在符号网络中,每个节点都有一个正度和一个负度,分别表示连接到该节点的正边和负边的数量。所以符号网络会有正度分布分布和负度分布。[11][12]
 +
  
 
== 参见 ==
 
== 参见 ==

2021年2月28日 (日) 00:05的版本

和网络的研究领域,网络节点的度是它与其他节点的连接数,而度分布就是整个网络中这些度的概率分布。

定义

网络中一个节点的度(有时会被误认为连通性)是该节点与其他节点的连接或边的数量。如果网络是有向的,里面的边也会具有方向,从一个节点指向另一个节点,那么这些节点就会有两个度,一个度表示入射边的数量,另一个度表示出射边的数量,分别记为入度和出度。


度分布P(k)定义是:网络中度值为k的所有节点与总节点数量的分数比值,如果一个网络中有n个节点,且其中nk个节点的度值为k,那么 P(k) = nk/n。度分布就是P(k)的整体分布。类似的,对于有向网络也可以定义出度分布和入度分布。


度分布的定义也可以用累积度分布Cumulative Degree Distribution(位置[math]\displaystyle{ k }[/math]的累积度分布的值表示网络中度值小于或等于[math]\displaystyle{ k }[/math]的概率)的形式来表示,也可以用互补累积度分布Complementary Cumulative Degree Distribution或者逆累积度分布([math]\displaystyle{ k }[/math]处的互补累积度分布的值表示网络中度值大于[math]\displaystyle{ k }[/math]的概率)的形式表示,此分布与积累度分布互补。


观察度分布

无论是在研究真实网络(如互联网和社会网络)还是在理论网络, 度分布都极为重要。以最简单的网络模型——随机图ER模型)为例,该网络中的[math]\displaystyle{ n }[/math]个节点中任意两个节点之间以概率[math]\displaystyle{ p }[/math]连接,以概率[math]\displaystyle{ p }[/math]不连接,它们之间为独立事件。整个网络的度服从二项分布,其中度值为[math]\displaystyle{ k }[/math]的概率为:

[math]\displaystyle{ P(k) = {n-1\choose k} p^k (1 - p)^{n-1-k}, }[/math]


(当[math]\displaystyle{ n }[/math]无限大,平均度为[math]\displaystyle{ ⟨k⟩=p(n−1) }[/math]保持有限时,该二项分布可近似为泊松分布)。

但现实世界中的大多数网络的度分布却与上述分布非常不同,它们大多数是高度右偏的,这就意味着网络中的大量节点的度值较低,但少数节点,即所谓的“枢纽”,度值很高。一些网络,尤其是互联网、万维网和一些社交网络,其度分布被认为近似遵循幂律分布 power law:


[math]\displaystyle{ P(k)\sim k^{-\gamma} }[/math]


其中[math]\displaystyle{ γ }[/math]是一个常数,被称为幂律指数。这种网络被称为无标度网络 Scale-free network,它因其特殊的结构和动力学性质而引起人们的关注。[1][2][3][4]然而,最近有一个基于广泛真实数据的综合性研究认为,如果用严格的统计方法,无标度网络实际上是稀有的。[5]



一些研究人员对这些发现提出了异议,认为研究中使用的定义过于严格,[6] 其他人则认为,确定度分布的精确函数形式不必要,只需要知道度分布是否为厚尾分布就好。[7]对度分布的特定形式的过度解释也受到批评,因为它没有考虑网络如何随时间演化。


超额度分布

余度分布 Excess Degree Distribution的定义是:沿着任意一条边到达某个节点,这个节点其他边的数量的概率分布。[6]换句话说,它是随链接进入一个节点后出去的边数的分布。


假设一个网络具有度分布[math]\displaystyle{ P(k) }[/math],通过选择一个节点(随机或非随机)跟随它的一个邻近点(假设至少有一个邻近点),那么该节点具有[math]\displaystyle{ k }[/math] 个邻近点的概率不是由[math]\displaystyle{ P(k) }[/math].给出的。造成这一结果的原因在于,无论何时在异质网络中选择某个节点,它都更有可能通过跟随该节点的某个现有邻点到达枢纽节点。这些节点具有度[math]\displaystyle{ k }[/math]的真实概率是[math]\displaystyle{ q(k) }[/math],它被称为该节点的超额度。在配置模型 Configuration Model中,忽略节点之间的相关性,并假定每个节点以相同的概率连接到网络中的其他任何节点,超额度分布表示为:



[math]\displaystyle{ q(k) = \frac{k+1}{\langle k \rangle}P(k+1), }[/math]


这里[math]\displaystyle{ {\langle k \rangle} }[/math]是模型的平均度。由此可知,任意节点的邻居的平均度会大于该节点的平均度。推广到在社交网络络中,这意味着你的朋友平均比你拥有更多的朋友。这就是著名的朋友悖论 Friendship Paradox。可以证明,如果一个网络的平均超额度大于1,那么它可以有一个巨大的联通分支:

[math]\displaystyle{ \sum_k kq(k) \gt 1 \Rightarrow {\langle k^2 \rangle}-2{\langle k \rangle}\gt 0 }[/math]


要注意的是,以上两个方程只适用于配置模型,想要准确得到现实世界的网络中的余度分布,还应考虑网络中的度-度相关性。


函数生成方法

生成函数可以用来计算随机网络的不同性质。分别给定某些网络的度分布[math]\displaystyle{ P(k) }[/math]和余度分布[math]\displaystyle{ q(k) }[/math],可以以下列形式写出两个幂级数:

[math]\displaystyle{ G_0(x) = \textstyle \sum_{k} \displaystyle P(k)x^k }[/math][math]\displaystyle{ G_1(x) = \textstyle \sum_{k} \displaystyle q(k)x^k = \textstyle \sum_{k} \displaystyle \frac{k}{\langle k \rangle}P(k)x^{k-1} }[/math]


[math]\displaystyle{ G_1(x) }[/math] 的值也可得出通过 [math]\displaystyle{ G_0(x) }[/math]的导数:


[math]\displaystyle{ G_1(x) = \frac{G'_0(x)}{G'_0(1)} }[/math]


如果已知概率分布[math]\displaystyle{ P(k) }[/math]的生成函数,我们可以通过对其微分重新得到[math]\displaystyle{ P(k) }[/math]

[math]\displaystyle{ P(k) = \frac{1}{k!} {\operatorname{d}^k\!G\over\operatorname{d}\!x^k}\biggl \vert _{x=0} }[/math]

一些性质,如一些矩,然后,可以很容易地进行计算依据[math]\displaystyle{ G_0(x) }[/math] 和它的导数:


[math]\displaystyle{ {\langle k \rangle} = G'_0(1) }[/math]
[math]\displaystyle{ {\langle k^2 \rangle} = G''_0(1) + G'_0(1) }[/math]


更一般的,有:

[math]\displaystyle{ {\langle k^m \rangle} = \Biggl[{\bigg(\operatorname{x}{\operatorname{d}\!\over\operatorname{dx}\!}\biggl)^m}G_0(x)\Biggl]_{x=1} }[/math]


对于服从泊松分布的随机网络,如ER随机图[math]\displaystyle{ G_1(x) = G_0(x) }[/math]就是这种类型的随机网络理论特别简单的原因。一阶和二阶近邻的概率分布由函数[math]\displaystyle{ G_0(x) }[/math][math]\displaystyle{ G0(G1(x)) }[/math]生成。进一步扩展,[math]\displaystyle{ m }[/math]阶近邻的概率分布由如下式子得到:


[math]\displaystyle{ G_0\bigl(G_1(...G_1(x)...)\bigr) }[/math]

其中的 [math]\displaystyle{ G_1 }[/math] 函数作用到自身(递归调用)31次。

一阶近邻的平均数量c1就是[math]\displaystyle{ c_1 }[/math][math]\displaystyle{ {\langle k \rangle} = {dG_0(x)\over dx}|_{x=1} }[/math] 二阶近邻的平均数量是:[math]\displaystyle{ c_2 = \biggl[ {d\over dx}G_0\big(G_1(x)\big)\biggl]_{x=1} = G_1'(1)G'_0\big(G_1(1)\big) = G_1'(1)G'_0(1) = G''_0(1) }[/math]


有向网络的度分布

图1:维基百科超链接图(对数尺度)的入/出度分布


在有向网络中,每个节点都有相应的入度[math]\displaystyle{ k_{in} }[/math] 和出度[math]\displaystyle{ k_{out} }[/math],分别表示指向该节点的边的数量和从该节点指出的边的数量。若用 [math]\displaystyle{ P(k_{in}, k_{out}) }[/math]表示随机挑选一个节点,其入度为[math]\displaystyle{ k_{in} }[/math]出度为[math]\displaystyle{ k_{out} }[/math]的概率,则对应于这个联合概率分布的生成函数可以写成含有两个变量[math]\displaystyle{ x }[/math][math]\displaystyle{ y }[/math] 的形式:


[math]\displaystyle{ \mathcal{G}(x,y) = \sum_{k_{in},k_{out}} \displaystyle P({k_{in},k_{out}})x^{k_{in}}y^{k_{out}} . }[/math]


由于有向网络中的每条边必须离开某个节点并进入另一个节点,因此净进入一个节点平均边数是零,即

[math]\displaystyle{ \langle{k_{in}-k_{out}}\rangle =\sum_{k_{in},k_{out}} \displaystyle (k_{in}-k_{out})P({k_{in},k_{out}}) = 0 }[/math],


这意味着,生成函数必须满足:


[math]\displaystyle{ {\partial \mathcal{G}\over\partial x}\vert _{x,y=1} = {\partial \mathcal{G}\over\partial y}\vert _{x,y=1} = c, }[/math]

[math]\displaystyle{ c }[/math]是网络中节点的平均度(出度和入度);[math]\displaystyle{ \langle{k_{in}}\rangle = \langle{k_{out}}\rangle = c. }[/math]

基于函数[math]\displaystyle{ \mathcal{G}(x,y) }[/math],类似于与前面所述,我们可以得到入/出度分布和入/出的余度分布的生成函数。[math]\displaystyle{ G^{in}_0(x) }[/math]可以定义为一个随机选择节点上所到达边数的生成函数, [math]\displaystyle{ G^{in}_1(x) }[/math]可定义为随机选择的边指向的节点的到达边数的生成函数。我们也可以定义 [math]\displaystyle{ G^{out}_0(y) }[/math][math]\displaystyle{ G^{out}_1(y) }[/math]表示离开节点的边的数量的生成函数:

  • [math]\displaystyle{ G^{in}_0(x) = \mathcal{G}(x,1) }[/math]
  • [math]\displaystyle{ G^{in}_1(x) = \frac{1}{c} {\partial \mathcal{G}\over\partial x}\vert _{y=1} }[/math]
  • [math]\displaystyle{ G^{out}_0(y) = \mathcal{G}(1,y) }[/math]
  • [math]\displaystyle{ G^{out}_1(y) = \frac{1}{c} {\partial \mathcal{G}\over\partial y}\vert _{x=1} }[/math]


这里,一阶近邻的平均数量[math]\displaystyle{ c_1 }[/math][math]\displaystyle{ {\partial \mathcal{G}\over\partial x}\biggl \vert _{x,y=1} = {\partial \mathcal{G}\over\partial y}\biggl \vert _{x,y=1} }[/math](公式里面增加=c),随机选择一个节点的二阶近邻的平均数量为[math]\displaystyle{ c_2 = G_1'(1)G'_0(1) ={\partial^2 \mathcal{G}\over\partial x\partial y}\biggl \vert _{x,y=1} }[/math]。 这些也可以分别表示通过指向的边来到某一个节点的一阶近邻和二阶近邻的平均数量,因为这些方程显然是在[math]\displaystyle{ x }[/math][math]\displaystyle{ y }[/math]上对称的。


符号网络的度分布

在符号网络中,每个节点都有一个正度和一个负度,分别表示连接到该节点的正边和负边的数量。所以符号网络会有正度分布分布和负度分布。[11][12]


参见

参考

  1. Barabási, Albert-László; Albert, Réka (1999-10-15). "Emergence of Scaling in Random Networks". Science. 286 (5439): 509–512. arXiv:cond-mat/9910332. Bibcode:1999Sci...286..509B. doi:10.1126/science.286.5439.509. ISSN 0036-8075. PMID 10521342.
  2. Albert, Réka; Barabási, Albert-László (2000-12-11). "Topology of Evolving Networks: Local Events and Universality" (PDF). Physical Review Letters. 85 (24): 5234–5237. arXiv:cond-mat/0005085. Bibcode:2000PhRvL..85.5234A. doi:10.1103/physrevlett.85.5234. hdl:2047/d20000695. ISSN 0031-9007. PMID 11102229.
  3. Dorogovtsev, S. N.; Mendes, J. F. F.; Samukhin, A. N. (2001-05-21). "Size-dependent degree distribution of a scale-free growing network". Physical Review E. 63 (6): 062101. arXiv:cond-mat/0011115. Bibcode:2001PhRvE..63f2101D. doi:10.1103/physreve.63.062101. ISSN 1063-651X. PMID 11415146.
  4. Pachon, Angelica; Sacerdote, Laura; Yang, Shuyi (2018). "Scale-free behavior of networks with the copresence of preferential and uniform attachment rules". Physica D: Nonlinear Phenomena. 371: 1–12. arXiv:1704.08597. Bibcode:2018PhyD..371....1P. doi:10.1016/j.physd.2018.01.005.
  5. Holme, Petter (2019-03-04). "Rare and everywhere: Perspectives on scale-free networks". Nature Communications (in English). 10 (1): 1016. Bibcode:2019NatCo..10.1016H. doi:10.1038/s41467-019-09038-8. ISSN 2041-1723. PMC 6399274. PMID 30833568.
  6. Newman, Mark (2018-10-18) (in en). Networks. 1. Oxford University Press. doi:10.1093/oso/9780198805090.001.0001. ISBN 978-0-19-880509-0. http://www.oxfordscholarship.com/view/10.1093/oso/9780198805090.001.0001/oso-9780198805090. 


编者推荐

集智俱乐部

集智文章推荐

从神经网络功能预测结构的几何框架 | 网络科学论文速递17篇

集智斑图最新论文栏目,关注复杂系统、网络科学、计算社会科学、统计物理等领域的前沿进展,每天即时更新相关顶刊论文,和最新arXiv预印本论文。


巴拉巴西网络科学(课程)

本课程中,有幸邀请了汪小帆、赵海兴、许小可、史定华、陈清华、张江、狄增如、陈关荣、樊瑛、刘宗华这十个来自六大不同高校、在网络科学领域耕耘许久的教授作为导师,依据教材框架,各有侧重地为我们共同勾勒出整个学科的美丽图景,展示这个学科的迷人魅力,指引这个学科的灿烂未来。



本中文词条由Ryan 参与编译, CecileLi趣木木 审校,不是海绵宝宝编辑,欢迎在讨论页面留言。

本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。