更改

删除669字节 、 2021年3月12日 (五) 18:53
第126行: 第126行:  
==属性/性质==
 
==属性/性质==
 
===最小作用原理===
 
===最小作用原理===
The stabilization of chip configurations obeys a form of ''[[principle of least action|least action principle]]'': each vertex topples no more than necessary in the course of the stabilization.
     −
构型的稳定化遵循一种“最小作用原理”的形式:每个顶点在稳定过程中不超过必要的崩塌量。<ref name=Fey2010>
+
碎片构型的稳定化遵循一种“最小作用原理”的形式:每个顶点在稳定过程中不超过必要的崩塌量。<ref name=Fey2010>
 
{{cite journal
 
{{cite journal
 
| author = Fey, A. |author2=Levine, L.|author3=Peres, Y.
 
| author = Fey, A. |author2=Levine, L.|author3=Peres, Y.
第148行: 第147行:  
More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>.
 
More formally, if <math>\mathbf{u}</math> is a vector such that <math>\mathbf{u}(v)</math> is the number of times the vertex <math>v</math> topples during the stabilization (via the toppling of unstable vertices) of a chip configuration <math>z</math>, and <math>\mathbf{n}</math> is an integral vector (not necessarily non-negative) such that <math>z-\mathbf{n}\Delta'</math> is stable, then <math>\mathbf{u}(v) \leq \mathbf{n}(v)</math> for all vertices <math>v</math>.
   −
更正式地说,如果<math>\mathbf{u}</math>是一个向量, <math>\mathbf{u}(v)</math>是碎片构型<math>z</math>在稳定过程中(通过不稳定顶点的崩塌)顶点<math>v</math>崩塌的次数,并且<math>\mathbf{n}</math>可积,(是一个积分向量)(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>,<math>\mathbf{u}(v) \leq \mathbf{n}(v)</math>。
+
更形式化地说,如果<math>\mathbf{u}</math>是一个向量, <math>\mathbf{u}(v)</math>是碎片构型<math>z</math>在稳定过程中(通过不稳定顶点的崩塌)顶点<math>v</math>崩塌的次数,
   −
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])<math>\mathbf{n}</math> is an integral vector (not necessarily non-negative)这一句话的翻译存疑。==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])
+
<math>\mathbf{n}</math>是一个积分向量(不一定是非负的),使得<math>z-\mathbf{n}\Delta'</math>是稳定的,那么对于所有顶点<math>v</math>,有<math>\mathbf{u}(v) \leq \mathbf{n}(v)</math>。
   −
===缩放极限===
+
 
 +
===缩放极限(标度极限)===
       
[[File:Scaling sandpile identity.gif|thumb|沙堆标识在方形网格不断增加的动画。 黑色表示沙粒数为0的顶点,绿色表示沙粒数为1,紫色表示沙粒数为2,金色表示沙粒数为3。]]
 
[[File:Scaling sandpile identity.gif|thumb|沙堆标识在方形网格不断增加的动画。 黑色表示沙粒数为0的顶点,绿色表示沙粒数为1,紫色表示沙粒数为2,金色表示沙粒数为3。]]
   −
动画显示了对应网格尺寸<math>N\geq 1</math>不断增大,不同大小的<math>N\times N</math>正方形网格上的沙堆群标识的重复构型,因此,配置被重新缩放,以始终具有相同的物理尺寸。从视觉上看,更大网格上的标识似乎变得越来越详细,并且“收敛到一个连续的图像”。从数学上讲,这表明基于弱收敛的概念(或其他一些广义的收敛概念),正方形网格上沙堆恒等式存在缩放极限。事实上,Wesley-Pegden和Charles-Smart已经证明了循环沙堆结构缩放极限的存在性。<ref name=Pegden2016>{{cite arxiv |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Stability of patterns in the Abelian sandpile.|eprint=1708.09432 | date=2017  | ref=Pegden2017|class=math.AP }}</ref>
+
动画显示了在不同的<math>N\times N,N\geq 1</math>网格上的沙堆群一个实例的常返构型,随着<math>N</math>增加的情况。将构型标度变换到同样的物理尺寸。看起来,更多的网格会表现得更加精细,并逐步“收敛到一个连续的图像”。从数学上讲,这是因为基于弱收敛的概念(或其他一些广义的收敛概念),方格上的沙堆模型在缩放极限。事实上,Wesley-Pegden和Charles-Smart已经证明了常返沙堆构型存在缩放极限<ref name=Pegden2016>{{cite arxiv |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Stability of patterns in the Abelian sandpile.|eprint=1708.09432 | date=2017  | ref=Pegden2017|class=math.AP }}</ref>
.<ref name=Pegden2013>{{cite journal |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Convergence of the Abelian sandpile |journal=Duke Mathematical Journal |date=2013 |volume=162 |issue=4 |pages=627–642 |doi=10.1215/00127094-2079677 |ref=Pegden2013|arxiv=1105.0111 |s2cid=13027232 }}</ref>在与Lionel Levine的进一步合作中,他们使用缩放极限来解释方形网格上沙堆的分形结构。<ref name=Levine2016>{{cite journal |last1=Levine |first1=Lionel |last2=Pegden |first2=Wesley |title=Apollonian structure in the Abelian sandpile |journal=Geometric and Functional Analysis |date=2016 |volume=26 |issue=1 |pages=306–336 |doi=10.1007/s00039-016-0358-7 |ref=Levine2016|hdl=1721.1/106972 |s2cid=119626417 |hdl-access=free }}</ref>
+
.<ref name=Pegden2013>{{cite journal |last1=Pegden |first1=Wesley |last2=Smart |first2=Charles |title=Convergence of the Abelian sandpile |journal=Duke Mathematical Journal |date=2013 |volume=162 |issue=4 |pages=627–642 |doi=10.1215/00127094-2079677 |ref=Pegden2013|arxiv=1105.0111 |s2cid=13027232 }}</ref>。在与Lionel Levine的进一步合作中,他们使用缩放极限来解释了方格上沙堆的分形结构。<ref name=Levine2016>{{cite journal |last1=Levine |first1=Lionel |last2=Pegden |first2=Wesley |title=Apollonian structure in the Abelian sandpile |journal=Geometric and Functional Analysis |date=2016 |volume=26 |issue=1 |pages=306–336 |doi=10.1007/s00039-016-0358-7 |ref=Levine2016|hdl=1721.1/106972 |s2cid=119626417 |hdl-access=free }}</ref>
 
  −
==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])whereby the configurations are rescaled to always have the same physical dimension翻译存疑 ==[[用户:Zcy|Zcy]]([[用户讨论:Zcy|讨论]])
      
== 归纳与相关模型==
 
== 归纳与相关模型==