更改

跳到导航 跳到搜索
删除3字节 、 2021年6月4日 (五) 13:18
无编辑摘要
第11行: 第11行:  
This idea is part of the [[Rubin Causal Model|Rubin Causal Inference Model]], developed by [[Donald Rubin]] in collaboration with [[Paul R. Rosenbaum|Paul Rosenbaum]] in the early 1970s. The exact definition differs between their articles in that period. In one of Rubins articles from 1978 Rubin discuss ''ignorable assignment mechanisms'',<ref name="rubin78">{{cite journal |last1=Rubin |first1=Donald |title=Bayesian Inference for Causal Effects: The Role of Randomization |journal=The Annals of Statistics |date=1978 |volume=6 |issue=1 |pages=34–58|doi=10.1214/aos/1176344064 |doi-access=free }}</ref> which can be understood as the way individuals are assigned to treatment groups is irrelevant for the data analysis, given everything that is recorded about that individual. Later, in 1983 <ref>{{cite journal |last1=Rubin |first1=Donald B. |last2=Rosenbaum |first2=Paul R. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |date=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.2307/2335942 |jstor=2335942 |doi-access=free }}</ref> Rubin and Rosenbaum rather define ''strongly ignorable treatment assignment'' which is a stronger condition, mathematically formulated as <math>(r_1,r_0) \perp \!\!\!\perp z \mid v ,\quad 0<\operatorname{pr}(z=1)<1 \quad \forall v</math>, where <math>r_t</math> is a potential outcome given treatment <math>t</math>, <math>v</math> is some covariates and <math>z</math> is the actual treatment.
 
This idea is part of the [[Rubin Causal Model|Rubin Causal Inference Model]], developed by [[Donald Rubin]] in collaboration with [[Paul R. Rosenbaum|Paul Rosenbaum]] in the early 1970s. The exact definition differs between their articles in that period. In one of Rubins articles from 1978 Rubin discuss ''ignorable assignment mechanisms'',<ref name="rubin78">{{cite journal |last1=Rubin |first1=Donald |title=Bayesian Inference for Causal Effects: The Role of Randomization |journal=The Annals of Statistics |date=1978 |volume=6 |issue=1 |pages=34–58|doi=10.1214/aos/1176344064 |doi-access=free }}</ref> which can be understood as the way individuals are assigned to treatment groups is irrelevant for the data analysis, given everything that is recorded about that individual. Later, in 1983 <ref>{{cite journal |last1=Rubin |first1=Donald B. |last2=Rosenbaum |first2=Paul R. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |date=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.2307/2335942 |jstor=2335942 |doi-access=free }}</ref> Rubin and Rosenbaum rather define ''strongly ignorable treatment assignment'' which is a stronger condition, mathematically formulated as <math>(r_1,r_0) \perp \!\!\!\perp z \mid v ,\quad 0<\operatorname{pr}(z=1)<1 \quad \forall v</math>, where <math>r_t</math> is a potential outcome given treatment <math>t</math>, <math>v</math> is some covariates and <math>z</math> is the actual treatment.
   −
这个想法是20世纪70年代早期[[Donald Rubin]]和[[Paul R. Rosenbaum|Paul Rosenbaum]] 合作提出的[[鲁宾因果推理模型]]的一部分。但那时,他们文章中可忽略性的确切定义不同。1978年鲁宾在一篇文章中讨论了''可忽略的分配机制'',<ref name="rubin78">{{cite journal |last1=Rubin |first1=Donald |title=Bayesian Inference for Causal Effects: The Role of Randomization |journal=The Annals of Statistics |date=1978 |volume=6 |issue=1 |pages=34–58|doi=10.1214/aos/1176344064 |doi-access=free }}</ref> 其可理解为将个体分配到处理组的方式与数据分析无关,因为已经记录了有关该个体的所有信息。后来,在 1983 年,Rubin 和 Rosenbaum 更确切地定义了“处理分配的强可忽略性”, <ref>{{cite journal |last1=Rubin |first1=Donald B. |last2=Rosenbaum |first2=Paul R. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |date=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.2307/2335942 |jstor=2335942 |doi-access=free }}</ref>,这是一个更强的假设条件,数学公式为<math>(r_1,r_0) \perp \!\!\!\perp z \mid v ,\quad 0<\operatorname{pr}(z=1)<1 \quad \forall v</math>,其中<math>r_t</math>是给定处理状态 <math>t</math>下的潜在结果,<math>v</math> 是协变量,<math>z</math> 是实际的处理状态。
+
这个想法是20世纪70年代早期[[Donald Rubin]]和[[Paul R. Rosenbaum|Paul Rosenbaum]] 合作提出的[[鲁宾因果推理模型]]的一部分。但那时,他们文章中可忽略性的确切定义不同。1978年鲁宾在一篇文章中讨论了''可忽略的分配机制'',<ref name="rubin78">{{cite journal |last1=Rubin |first1=Donald |title=Bayesian Inference for Causal Effects: The Role of Randomization |journal=The Annals of Statistics |date=1978 |volume=6 |issue=1 |pages=34–58|doi=10.1214/aos/1176344064 |doi-access=free }}</ref> 其可理解为将个体分配到处理组的方式与数据分析无关,因为已经记录了有关该个体的所有信息。后来,在 1983 年,Rubin 和 Rosenbaum 更确切地定义了“处理分配的强可忽略性” <ref>{{cite journal |last1=Rubin |first1=Donald B. |last2=Rosenbaum |first2=Paul R. |title=The Central Role of the Propensity Score in Observational Studies for Causal Effects |journal=Biometrika |date=1983 |volume=70 |issue=1 |pages=41–55 |doi=10.2307/2335942 |jstor=2335942 |doi-access=free }}</ref>,这是一个更强的假设条件,数学公式为<math>(r_1,r_0) \perp \!\!\!\perp z \mid v ,\quad 0<\operatorname{pr}(z=1)<1 \quad \forall v</math>,其中<math>r_t</math>是给定处理状态 <math>t</math>下的潜在结果,<math>v</math> 是协变量,<math>z</math> 是实际的处理状态。
     
12

个编辑

导航菜单