更改

跳到导航 跳到搜索
添加202字节 、 2021年6月23日 (三) 12:35
第576行: 第576行:  
Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
 
Life is a major source of complexity, and evolution is the major process behind the varying forms of life. In this view, evolution is the process describing the growth of complexity in the natural world and in speaking of the emergence of complex living beings and life-forms, this view refers therefore to processes of sudden changes in evolution.
   −
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程,在谈到复杂生物和生命形式的涌现时,这种观点是指进化中的突然变化的过程。
+
生命是复杂性的主要来源,进化是不同生命形式背后的主要过程。这种观点认为,进化是描述自然界中复杂性增长的过程。在谈到复杂生物和生命形式的涌现时,这种观点是指进化中的突变就是复杂性的主要来源。
 
  −
 
        第586行: 第584行:  
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources. The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources. These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
 
Life is thought to have emerged in the early RNA world when RNA chains began to express the basic conditions necessary for natural selection to operate as conceived by Darwin: heritability, variation of type, and competition for limited resources. Fitness of an RNA replicator (its per capita rate of increase) would likely be a function of adaptive capacities that were intrinsic (in the sense that they were determined by the nucleotide sequence) and the availability of resources. The three primary adaptive capacities may have been (1) the capacity to replicate with moderate fidelity (giving rise to both heritability and variation of type); (2) the capacity to avoid decay; and (3) the capacity to acquire and process resources. These capacities would have been determined initially by the folded configurations of the RNA replicators (see “Ribozyme”) that, in turn, would be encoded in their individual nucleotide sequences. Competitive success among different replicators would have depended on the relative values of these adaptive capacities.
   −
生命被认为是在早期的 RNA 世界中出现的,那时 RNA 链开始出现达尔文所构想的自然选择运作的基本条件: 遗传性、品种变异和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的适应性(其人均增长率)可能是固有的适应能力 (在某种意义上说,它们是由核酸序列决定的)和资源的可用性的函数。
+
生命被认为是在早期的 RNA 世界中出现的。那时 RNA 链展示出了达尔文所构想的自然选择运作的基本条件: 遗传、变异、和对有限资源的竞争。'''RNA 复制器 RNA Replicators'''的适应性(亦即RNA的平均增长率)可能是固有的''适应能力'' (在某种意义上说,它们是由核酸序列决定的)和''可用资源''的函数。
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得原文是个半截句 the availability of resources。。。?
+
--[[用户:嘉树|嘉树]]([[用户讨论:嘉树|讨论]]) 觉得原文是个半截句 the availability of resources。。。?[[用户:Qige96|Ricky]] 不。原文是“RNA适应性是适应能力和可用资源的函数(Fitness //..a function of adaptive capacities ... and the availability of resources)”
 
三种主要的适应能力可能是: (1)具有中等保真度的复制能力(同时具有遗传和变异的能力) ; (2)避免衰变的能力; (3)获取和加工资源的能力。这些能力最初是由 RNA 复制器(见'''“核酶 Ribozyme”''')的折叠结构决定的,而这些结构又反过来编码在各自的核酸序列中。不同复制器之间的竞争成功将取决于这些适应能力的相对值。
 
三种主要的适应能力可能是: (1)具有中等保真度的复制能力(同时具有遗传和变异的能力) ; (2)避免衰变的能力; (3)获取和加工资源的能力。这些能力最初是由 RNA 复制器(见'''“核酶 Ribozyme”''')的折叠结构决定的,而这些结构又反过来编码在各自的核酸序列中。不同复制器之间的竞争成功将取决于这些适应能力的相对值。
       
370

个编辑

导航菜单