更改

跳到导航 跳到搜索
删除3字节 、 2021年6月28日 (一) 00:25
无编辑摘要
第35行: 第35行:     
对这个问题最著名的回答之一是1929年由莱奥·西拉拉德Leó Szilárd和莱昂·布里渊 Léon Brillouin提出的。Szilárd指出,麦克斯韦妖需要一些方法来测量分子的速度,而获取信息的过程需要消耗能量。由于妖和气体是相互作用的,我们必须考虑气体和妖的总熵。妖的能量消耗将导致妖熵值的增加,这将大于气体熵值的降低。1960年,罗尔夫·兰道尔 Rolf Landauer提出了一个例外。他认识到,只要某些测量过程是热力学可逆的,就不需要增加熵。他认为这些“可逆”的测量可以用来分类分子,违反第二定律。但是,由于热力学熵和信息熵之间的联系,这还意味着不得删除已记录的测量。换句话说,为了决定是否让一个分子通过,妖必须获得关于分子状态的信息,要么丢弃它,要么存储它。丢弃它会立即导致熵的增加,但是妖不能无限期地储存它。1982年,查尔斯·本内特 Charles Bennett指出,无论准备得多么充分,妖最终都会耗尽信息存储空间,并且必须开始删除它先前收集的信息。擦除信息是一种热力学不可逆性过程,它增加了系统的熵。虽然Bennett得出了与Szilárd1929年的论文相同的结论,即麦克斯韦妖不能违反第二定律,因为会产生熵,而熵是由于不同的原因而达到的。根据Landauer原理,埃里克·卢兹 Eric Lutz等人在2012年通过实验测量了擦除信息所消耗的最小能量。此外,Lutz 等人证实,为了接近 Landauer 的极限,系统必须渐近接近零处理速度。
 
对这个问题最著名的回答之一是1929年由莱奥·西拉拉德Leó Szilárd和莱昂·布里渊 Léon Brillouin提出的。Szilárd指出,麦克斯韦妖需要一些方法来测量分子的速度,而获取信息的过程需要消耗能量。由于妖和气体是相互作用的,我们必须考虑气体和妖的总熵。妖的能量消耗将导致妖熵值的增加,这将大于气体熵值的降低。1960年,罗尔夫·兰道尔 Rolf Landauer提出了一个例外。他认识到,只要某些测量过程是热力学可逆的,就不需要增加熵。他认为这些“可逆”的测量可以用来分类分子,违反第二定律。但是,由于热力学熵和信息熵之间的联系,这还意味着不得删除已记录的测量。换句话说,为了决定是否让一个分子通过,妖必须获得关于分子状态的信息,要么丢弃它,要么存储它。丢弃它会立即导致熵的增加,但是妖不能无限期地储存它。1982年,查尔斯·本内特 Charles Bennett指出,无论准备得多么充分,妖最终都会耗尽信息存储空间,并且必须开始删除它先前收集的信息。擦除信息是一种热力学不可逆性过程,它增加了系统的熵。虽然Bennett得出了与Szilárd1929年的论文相同的结论,即麦克斯韦妖不能违反第二定律,因为会产生熵,而熵是由于不同的原因而达到的。根据Landauer原理,埃里克·卢兹 Eric Lutz等人在2012年通过实验测量了擦除信息所消耗的最小能量。此外,Lutz 等人证实,为了接近 Landauer 的极限,系统必须渐近接近零处理速度。
      
约翰·厄曼 John Earman和约翰 诺顿 John d. Norton 认为 Szilárd 和 Landauer 对麦克斯韦妖的解释是从假设热力学第二定律不会被妖侵犯开始的,并且从这个假设中得出妖的进一步属性,包括在擦除信息时消耗能量的必要性等等。因此援引这些派生属性来捍卫第二定律不受妖的影响是循环的。Bennett后来承认 Earman 和 Norton 的论点是正确的,同时坚持 Landauer 原理解释了真实系统不违反热力学第二定律的机制。
 
约翰·厄曼 John Earman和约翰 诺顿 John d. Norton 认为 Szilárd 和 Landauer 对麦克斯韦妖的解释是从假设热力学第二定律不会被妖侵犯开始的,并且从这个假设中得出妖的进一步属性,包括在擦除信息时消耗能量的必要性等等。因此援引这些派生属性来捍卫第二定律不受妖的影响是循环的。Bennett后来承认 Earman 和 Norton 的论点是正确的,同时坚持 Landauer 原理解释了真实系统不违反热力学第二定律的机制。
第85行: 第84行:  
====[https://swarma.org/?p=27045 前沿速递:麦克斯韦妖的新涨落定理]====
 
====[https://swarma.org/?p=27045 前沿速递:麦克斯韦妖的新涨落定理]====
 
由于研究人员对纳米尺度和介观尺度系统控制的兴趣,有一些研究通过改进麦克斯韦妖(Maxwell’s demon)的概念来关注开放系统中能量耗散的极限。在最近发表在 Science Advances 的一篇文章中,为了揭示麦克斯韦妖控制的系统背后的基本物理原理,研究人员证明了一组以前未探索过的涨落定理。这些涨落定理意味着系统存在一个内在的非平衡状态,受麦克斯韦妖引起的耗散信息影响。
 
由于研究人员对纳米尺度和介观尺度系统控制的兴趣,有一些研究通过改进麦克斯韦妖(Maxwell’s demon)的概念来关注开放系统中能量耗散的极限。在最近发表在 Science Advances 的一篇文章中,为了揭示麦克斯韦妖控制的系统背后的基本物理原理,研究人员证明了一组以前未探索过的涨落定理。这些涨落定理意味着系统存在一个内在的非平衡状态,受麦克斯韦妖引起的耗散信息影响。
  −
<br/>
      
====[https://swarma.org/?p=20958 从麦克斯韦妖到量子生物学,生命物质中是否潜藏着新物理学?]====
 
====[https://swarma.org/?p=20958 从麦克斯韦妖到量子生物学,生命物质中是否潜藏着新物理学?]====
 
直到著名的麦克斯韦妖(Maxwell’s demon)出现之前,信息和物理之间的联系一直不甚明确。而如今,信息正在成为连接物理学和生物学的一个关键概念。许多物理学家主张将信息放在物理学的核心位置,而另一些物理学家则猜测:新物理学潜藏在生物体的世界中。生物学正在成为物理学的下一个伟大前沿。
 
直到著名的麦克斯韦妖(Maxwell’s demon)出现之前,信息和物理之间的联系一直不甚明确。而如今,信息正在成为连接物理学和生物学的一个关键概念。许多物理学家主张将信息放在物理学的核心位置,而另一些物理学家则猜测:新物理学潜藏在生物体的世界中。生物学正在成为物理学的下一个伟大前沿。
   −
<br/>
+
<br/><br/>
    
----
 
----
1,068

个编辑

导航菜单