“联合熵”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第1行: 第1行:
 
此词条Jie翻译。由CecileLi初步审校。文中部分公式内容未正常显示,有“模板”点击打开后却没有内容,还有未显示去掉格式后的英文,不清楚是程序错误还是未编辑完成orz······
 
此词条Jie翻译。由CecileLi初步审校。文中部分公式内容未正常显示,有“模板”点击打开后却没有内容,还有未显示去掉格式后的英文,不清楚是程序错误还是未编辑完成orz······
  
{{Short description|Measure of information in probability and information theory}}
 
 
{{Information theory}}
 
  
 
[[文件:Entropy-mutual-information-relative-entropy-relation-diagram.svg|缩略图|右|该图表示在变量X、Y相关联的各种信息量之间,进行加减关系的维恩图。两个圆重合的区域是联合熵H(X,Y)。左侧的圆(红色和紫色)是单个熵H(X),红色是条件熵H(X ǀ Y)。右侧的圆(蓝色和紫色)为H(Y),蓝色为H(Y ǀ X)。中间紫色的是相互信息i(X; Y)。]]
 
[[文件:Entropy-mutual-information-relative-entropy-relation-diagram.svg|缩略图|右|该图表示在变量X、Y相关联的各种信息量之间,进行加减关系的维恩图。两个圆重合的区域是联合熵H(X,Y)。左侧的圆(红色和紫色)是单个熵H(X),红色是条件熵H(X ǀ Y)。右侧的圆(蓝色和紫色)为H(Y),蓝色为H(Y ǀ X)。中间紫色的是相互信息i(X; Y)。]]
  
 +
在'''<font bold="#ff8000"> 信息论Information theory</font>'''中,'''<font color="#ff8000"> 联合熵Joint entropy</font>'''是用于对与一组变量相关的不确定性进行度量。<ref name=korn>{{cite book |author1=Theresa M. Korn |author2=Korn, Granino Arthur |title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review |publisher=Dover Publications |location=New York |year= |isbn=0-486-41147-8 |oclc= |doi=}}</ref>
  
In [[information theory]], '''joint [[entropy (information theory)|entropy]]''' is a measure of the uncertainty associated with a set of [[random variables|variables]].<ref name=korn>{{cite book |author1=Theresa M. Korn |author2=Korn, Granino Arthur |title=Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review |publisher=Dover Publications |location=New York |year= |isbn=0-486-41147-8 |oclc= |doi=}}</ref>
+
==定义 ==
 
+
联合熵Shannon entropy </font>'''的定义是:以比特为单位,对于具有<math>\mathcal X</math><math>\mathcal Y</math>的两个离散随机变量函数<math>X</math><math>Y</math>'''有<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>
在'''<font color="#ff8000"> 信息论Information theory</font>'''中,'''<font color="#ff8000"> 联合熵Joint entropy</font>'''是用于对与一组变量相关的不确定性进行度量。
 
 
 
 
 
 
 
==Definition 定义 ==
 
The joint [[Shannon entropy]] (in [[bit]]s) of two discrete [[random variable|random variables]] <math>X</math> and <math>Y</math> with images <math>\mathcal X</math> and <math>\mathcal Y</math> is defined as<ref name=cover1991>{{cite book |author1=Thomas M. Cover |author2=Joy A. Thomas |title=Elements of Information Theory |publisher=Wiley |location=Hoboken, New Jersey |year= |isbn=0-471-24195-4}}</ref>{{rp|16}}
 
 
 
联合熵Shannon entropy </font>'''的定义是:以比特为单位,对于具有<math>\mathcal X</math>和<math>\mathcal Y</math>的两个离散随机变量函数<math>X</math>和<math>Y</math>'''有
 
  
 
{{Equation box 1
 
{{Equation box 1
第27行: 第17行:
 
|border colour = #0073CF
 
|border colour = #0073CF
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 
 
where <math>x</math> and <math>y</math> are particular values of <math>X</math> and <math>Y</math>, respectively, <math>P(x,y)</math> is the [[joint probability]] of these values occurring together, and <math>P(x,y) \log_2[P(x,y)]</math> is defined to be 0 if <math>P(x,y)=0</math>.
 
  
 
其中<math>x</math>和<math>y</math>分别是<math>X</math>和<math>Y</math>的特定值,<math>P(x,y)</math>是这些值产生交集时的联合概率,如果<math>P(x,y)=0</math>那么<math>P(x,y) \log_2[P(x,y)]</math>定义为0。
 
其中<math>x</math>和<math>y</math>分别是<math>X</math>和<math>Y</math>的特定值,<math>P(x,y)</math>是这些值产生交集时的联合概率,如果<math>P(x,y)=0</math>那么<math>P(x,y) \log_2[P(x,y)]</math>定义为0。
 
 
 
For more than two random variables <math>X_1, ..., X_n</math> this expands to
 
  
 
对于两个以上的随机变量<math>X_1, ..., X_n</math>,它扩展为
 
对于两个以上的随机变量<math>X_1, ..., X_n</math>,它扩展为
第49行: 第32行:
 
|border colour = #0073CF
 
|border colour = #0073CF
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 
 
where <math>x_1,...,x_n</math> are particular values of <math>X_1,...,X_n</math>, respectively, <math>P(x_1, ..., x_n)</math> is the probability of these values occurring together, and <math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math> is defined to be 0 if <math>P(x_1, ..., x_n)=0</math>.
 
  
 
其中<math>x_1,...,x_n</math>分别是<math>X_1,...,X_n</math>的特定值,<math>P(x_1, ..., x_n)</math>是这些值产生交集的概率,如果<math>P(x_1, ..., x_n)=0</math>那么<math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math>定义为0。
 
其中<math>x_1,...,x_n</math>分别是<math>X_1,...,X_n</math>的特定值,<math>P(x_1, ..., x_n)</math>是这些值产生交集的概率,如果<math>P(x_1, ..., x_n)=0</math>那么<math>P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)]</math>定义为0。
  
== Properties 属性 ==
+
== 属性 ==
 
 
===Nonnegativity 非负性===
 
The joint entropy of a set of random variables is a nonnegative number.
 
  
 +
===非负性===
 
一组随机变量的联合熵是一个非负数。
 
一组随机变量的联合熵是一个非负数。
 
  
 
:<math>H(X,Y) \geq 0</math>
 
:<math>H(X,Y) \geq 0</math>
第67行: 第44行:
 
:<math>H(X_1,\ldots, X_n) \geq 0</math>
 
:<math>H(X_1,\ldots, X_n) \geq 0</math>
  
 
+
===高值性/最值性/大于或等于单个熵的最大值===
 
 
=== Greater than r equal to the maximum of all of the individual entropies 高值性/最值性/大于或等于单个熵的最大值===
 
 
 
The joint entropy of a set of variables is greater than or equal to the maximum of all of the individual entropies of the variables in the set.
 
  
 
一组变量的联合熵大于或等于该组变量的所有单个熵的最大值。
 
一组变量的联合熵大于或等于该组变量的所有单个熵的最大值。
第81行: 第54行:
 
     \Bigl\{H\bigl(X_i\bigr) \Bigr\}</math>
 
     \Bigl\{H\bigl(X_i\bigr) \Bigr\}</math>
  
=== Less than or equal to the sum of individual entropies 低值性/小于或等于单个熵的总和===
+
=== 低值性/小于或等于单个熵的总和===
 
 
The joint entropy of a set of variables is less than or equal to the sum of the individual entropies of the variables in the set.  This is an example of [[subadditivity]].  This inequality is an equality if and only if <math>X</math> and <math>Y</math> are [[statistically independent]].<ref name=cover1991 />{{rp|30}}
 
 
 
 
一组变量的联合熵小于或等于该组变量各个熵的总和,这是次可加性的一个运用实例。即当且仅当<math>X</math>和<math>Y</math>独立统计时,该不等式才是等式。<ref name=cover1991 />{{rp|30}}
 
一组变量的联合熵小于或等于该组变量各个熵的总和,这是次可加性的一个运用实例。即当且仅当<math>X</math>和<math>Y</math>独立统计时,该不等式才是等式。<ref name=cover1991 />{{rp|30}}
  
第92行: 第62行:
 
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
 
:<math>H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n)</math>
  
== Relations to other entropy measures 与其他熵测度的关系 ==
+
== 与其他熵测度的关系 ==
 
 
Joint entropy is used in the definition of [[conditional entropy]]<ref name=cover1991 />{{rp|22}}
 
  
 
联合熵被用于定义'''<font color="#ff8000"> 条件熵Conditional entropy </font>''':
 
联合熵被用于定义'''<font color="#ff8000"> 条件熵Conditional entropy </font>''':
第103行: 第71行:
 
and <math display="block">H(X_1,\dots,X_n) = \sum_{k=1}^n H(X_k|X_{k-1},\dots, X_1)</math>
 
and <math display="block">H(X_1,\dots,X_n) = \sum_{k=1}^n H(X_k|X_{k-1},\dots, X_1)</math>
  
 
It is also used in the definition of [[mutual information]]<ref name=cover1991 />{{rp|21}}
 
 
它也被用于定义'''<font color="#ff8000"> 交互信息Mutual information</font>''':
 
它也被用于定义'''<font color="#ff8000"> 交互信息Mutual information</font>''':
 
  
 
:<math>\operatorname{I}(X;Y) = H(X) + H(Y) - H(X,Y)\,</math>
 
:<math>\operatorname{I}(X;Y) = H(X) + H(Y) - H(X,Y)\,</math>
 
  
 
In [[quantum information theory]], the joint entropy is generalized into the [[joint quantum entropy]].
 
In [[quantum information theory]], the joint entropy is generalized into the [[joint quantum entropy]].
第117行: 第81行:
  
  
=== Applications 应用 ===
+
===应用 ===
 
 
A python package for computing all multivariate joint entropies, mutual informations, conditional mutual information, total correlations, information distance in a dataset of n variables is available.<ref>{{cite web|url=https://infotopo.readthedocs.io/en/latest/index.html|title=InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github|author=|date=|website=github.com/pierrebaudot/infotopopy/|accessdate=26 September 2020}}</ref>
 
 
 
在这里我们提供了一个python软件包,可用于计算n个变量的数据集中的所有多元联合熵、交互信息、条件交互信息、总相关性以及信息距离。
 
  
== Joint differential entropy 联合微分熵 ==
+
在这里我们提供了一个python软件包,可用于计算n个变量的数据集中的所有多元联合熵、交互信息、条件交互信息、总相关性以及信息距离。<ref>{{cite web|url=https://infotopo.readthedocs.io/en/latest/index.html|title=InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github|author=|date=|website=github.com/pierrebaudot/infotopopy/|accessdate=26 September 2020}}</ref>
=== Definition 定义 ===
 
  
The above definition is for discrete random variables and just as valid in the case of continuous random variables. The continuous version of discrete joint entropy is called ''joint differential (or continuous) entropy''. Let <math>X</math> and <math>Y</math> be a continuous random variables with a [[joint probability density function]] <math>f(x,y)</math>. The differential joint entropy <math>h(X,Y)</math> is defined as<ref name=cover1991 />{{rp|249}}
+
== 联合微分熵 ==
 +
===定义 ===
  
 
上文中的定义是针对离散随机变量的,而其实对于连续随机变量,联合熵同样成立。离散联合熵的连续形式称为联合微分(或连续)熵。令<math>X</math>和<math>Y</math>分别为具有'''<font color="#ff8000"> 联合概率密度函数Joint probability density function</font>''' <math>f(x,y)</math>的连续随机变量,那么微分联合熵<math>h(X,Y)</math>定义为:
 
上文中的定义是针对离散随机变量的,而其实对于连续随机变量,联合熵同样成立。离散联合熵的连续形式称为联合微分(或连续)熵。令<math>X</math>和<math>Y</math>分别为具有'''<font color="#ff8000"> 联合概率密度函数Joint probability density function</font>''' <math>f(x,y)</math>的连续随机变量,那么微分联合熵<math>h(X,Y)</math>定义为:
 
  
 
{{Equation box 1
 
{{Equation box 1
第139行: 第98行:
 
|border colour = #0073CF
 
|border colour = #0073CF
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 
For more than two continuous random variables <math>X_1, ..., X_n</math> the definition is generalized to:
 
  
 
对于两个以上的连续随机变量<math>X_1, ..., X_n</math>,其定义可概括为:
 
对于两个以上的连续随机变量<math>X_1, ..., X_n</math>,其定义可概括为:
第153行: 第110行:
 
|border colour = #0073CF
 
|border colour = #0073CF
 
|background colour=#F5FFFA}}
 
|background colour=#F5FFFA}}
 
 
The [[integral]] is taken over the support of <math>f</math>. It is possible that the integral does not exist in which case we say that the differential entropy is not defined.
 
  
 
这里可以用积分处理表达<math>f</math>。当然,如果微分熵没有定义,那么积分也可能不存在。
 
这里可以用积分处理表达<math>f</math>。当然,如果微分熵没有定义,那么积分也可能不存在。
  
=== Properties 属性 ===
+
===属性 ===
As in the discrete case the joint differential entropy of a set of random variables is smaller or equal than the sum of the entropies of the individual random variables:
 
 
 
 
与离散条件下的联合熵相似,联合微分熵也具有同样的属性,即:一组随机变量的联合微分熵小于或等于各个随机变量的熵之和:
 
与离散条件下的联合熵相似,联合微分熵也具有同样的属性,即:一组随机变量的联合微分熵小于或等于各个随机变量的熵之和:
 
  
 
:<math>h(X_1,X_2, \ldots,X_n) \le \sum_{i=1}^n h(X_i)</math><ref name=cover1991 />{{rp|253}}
 
:<math>h(X_1,X_2, \ldots,X_n) \le \sum_{i=1}^n h(X_i)</math><ref name=cover1991 />{{rp|253}}
 
 
The following chain rule holds for two random variables:
 
  
 
以下链式法则适用于两个随机变量:
 
以下链式法则适用于两个随机变量:
 
  
 
:<math>h(X,Y) = h(X|Y) + h(Y)</math>
 
:<math>h(X,Y) = h(X|Y) + h(Y)</math>
 
 
In the case of more than two random variables this generalizes to:<ref name=cover1991 />{{rp|253}}
 
  
 
对于两个以上的随机变量,一般可归纳为:
 
对于两个以上的随机变量,一般可归纳为:
 
  
 
:<math>h(X_1,X_2, \ldots,X_n) = \sum_{i=1}^n h(X_i|X_1,X_2, \ldots,X_{i-1})</math>
 
:<math>h(X_1,X_2, \ldots,X_n) = \sum_{i=1}^n h(X_i|X_1,X_2, \ldots,X_{i-1})</math>
 
 
Joint differential entropy is also used in the definition of the [[mutual information]] between continuous random variables:
 
  
 
联合微分熵也用于定义连续随机变量之间的交互信息:
 
联合微分熵也用于定义连续随机变量之间的交互信息:
 
  
 
:<math>\operatorname{I}(X,Y)=h(X)+h(Y)-h(X,Y)</math>
 
:<math>\operatorname{I}(X,Y)=h(X)+h(Y)-h(X,Y)</math>
  
== References 参考文献 ==
+
==参考文献 ==
 
{{Reflist}}
 
{{Reflist}}
  

2021年8月15日 (日) 19:02的版本

此词条Jie翻译。由CecileLi初步审校。文中部分公式内容未正常显示,有“模板”点击打开后却没有内容,还有未显示去掉格式后的英文,不清楚是程序错误还是未编辑完成orz······


该图表示在变量X、Y相关联的各种信息量之间,进行加减关系的维恩图。两个圆重合的区域是联合熵H(X,Y)。左侧的圆(红色和紫色)是单个熵H(X),红色是条件熵H(X ǀ Y)。右侧的圆(蓝色和紫色)为H(Y),蓝色为H(Y ǀ X)。中间紫色的是相互信息i(X; Y)。

信息论Information theory中, 联合熵Joint entropy是用于对与一组变量相关的不确定性进行度量。[1]

定义

联合熵Shannon entropy 的定义是:以比特为单位,对于具有[math]\displaystyle{ \mathcal X }[/math][math]\displaystyle{ \mathcal Y }[/math]的两个离散随机变量函数[math]\displaystyle{ X }[/math][math]\displaystyle{ Y }[/math][2]

[math]\displaystyle{ \Eta(X,Y) = -\sum_{x\in\mathcal X} \sum_{y\in\mathcal Y} P(x,y) \log_2[P(x,y)] }[/math]

 

 

 

 

(Eq.1)

其中[math]\displaystyle{ x }[/math][math]\displaystyle{ y }[/math]分别是[math]\displaystyle{ X }[/math][math]\displaystyle{ Y }[/math]的特定值,[math]\displaystyle{ P(x,y) }[/math]是这些值产生交集时的联合概率,如果[math]\displaystyle{ P(x,y)=0 }[/math]那么[math]\displaystyle{ P(x,y) \log_2[P(x,y)] }[/math]定义为0。

对于两个以上的随机变量[math]\displaystyle{ X_1, ..., X_n }[/math],它扩展为


[math]\displaystyle{ \Eta(X_1, ..., X_n) = -\sum_{x_1 \in\mathcal X_1} ... \sum_{x_n \in\mathcal X_n} P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)] }[/math]

 

 

 

 

(Eq.2)

其中[math]\displaystyle{ x_1,...,x_n }[/math]分别是[math]\displaystyle{ X_1,...,X_n }[/math]的特定值,[math]\displaystyle{ P(x_1, ..., x_n) }[/math]是这些值产生交集的概率,如果[math]\displaystyle{ P(x_1, ..., x_n)=0 }[/math]那么[math]\displaystyle{ P(x_1, ..., x_n) \log_2[P(x_1, ..., x_n)] }[/math]定义为0。

属性

非负性

一组随机变量的联合熵是一个非负数。

[math]\displaystyle{ H(X,Y) \geq 0 }[/math]
[math]\displaystyle{ H(X_1,\ldots, X_n) \geq 0 }[/math]

高值性/最值性/大于或等于单个熵的最大值

一组变量的联合熵大于或等于该组变量的所有单个熵的最大值。


[math]\displaystyle{ H(X,Y) \geq \max \left[H(X),H(Y) \right] }[/math]
[math]\displaystyle{ H \bigl(X_1,\ldots, X_n \bigr) \geq \max_{1 \le i \le n} \Bigl\{H\bigl(X_i\bigr) \Bigr\} }[/math]

低值性/小于或等于单个熵的总和

一组变量的联合熵小于或等于该组变量各个熵的总和,这是次可加性的一个运用实例。即当且仅当[math]\displaystyle{ X }[/math][math]\displaystyle{ Y }[/math]独立统计时,该不等式才是等式。[2]:30


[math]\displaystyle{ H(X,Y) \leq H(X) + H(Y) }[/math]
[math]\displaystyle{ H(X_1,\ldots, X_n) \leq H(X_1) + \ldots + H(X_n) }[/math]

与其他熵测度的关系

联合熵被用于定义 条件熵Conditional entropy


[math]\displaystyle{ H(X|Y) = H(X,Y) - H(Y)\, }[/math],

and [math]\displaystyle{ H(X_1,\dots,X_n) = \sum_{k=1}^n H(X_k|X_{k-1},\dots, X_1) }[/math]

它也被用于定义 交互信息Mutual information

[math]\displaystyle{ \operatorname{I}(X;Y) = H(X) + H(Y) - H(X,Y)\, }[/math]

In quantum information theory, the joint entropy is generalized into the joint quantum entropy.

量子信息论Quantum information theory中,使用的是广义化的联合熵,即 联合量子熵Joint quantum entropy


应用

在这里我们提供了一个python软件包,可用于计算n个变量的数据集中的所有多元联合熵、交互信息、条件交互信息、总相关性以及信息距离。[3]

联合微分熵

定义

上文中的定义是针对离散随机变量的,而其实对于连续随机变量,联合熵同样成立。离散联合熵的连续形式称为联合微分(或连续)熵。令[math]\displaystyle{ X }[/math][math]\displaystyle{ Y }[/math]分别为具有 联合概率密度函数Joint probability density function [math]\displaystyle{ f(x,y) }[/math]的连续随机变量,那么微分联合熵[math]\displaystyle{ h(X,Y) }[/math]定义为:

[math]\displaystyle{ h(X,Y) = -\int_{\mathcal X , \mathcal Y} f(x,y)\log f(x,y)\,dx dy }[/math]

 

 

 

 

(Eq.3)

对于两个以上的连续随机变量[math]\displaystyle{ X_1, ..., X_n }[/math],其定义可概括为:


[math]\displaystyle{ h(X_1, \ldots,X_n) = -\int f(x_1, \ldots,x_n)\log f(x_1, \ldots,x_n)\,dx_1 \ldots dx_n }[/math]

 

 

 

 

(Eq.4)

这里可以用积分处理表达[math]\displaystyle{ f }[/math]。当然,如果微分熵没有定义,那么积分也可能不存在。

属性

与离散条件下的联合熵相似,联合微分熵也具有同样的属性,即:一组随机变量的联合微分熵小于或等于各个随机变量的熵之和:

[math]\displaystyle{ h(X_1,X_2, \ldots,X_n) \le \sum_{i=1}^n h(X_i) }[/math][2]:253

以下链式法则适用于两个随机变量:

[math]\displaystyle{ h(X,Y) = h(X|Y) + h(Y) }[/math]

对于两个以上的随机变量,一般可归纳为:

[math]\displaystyle{ h(X_1,X_2, \ldots,X_n) = \sum_{i=1}^n h(X_i|X_1,X_2, \ldots,X_{i-1}) }[/math]

联合微分熵也用于定义连续随机变量之间的交互信息:

[math]\displaystyle{ \operatorname{I}(X,Y)=h(X)+h(Y)-h(X,Y) }[/math]

参考文献

  1. Theresa M. Korn; Korn, Granino Arthur. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review. New York: Dover Publications. ISBN 0-486-41147-8. 
  2. 2.0 2.1 2.2 Thomas M. Cover; Joy A. Thomas. Elements of Information Theory. Hoboken, New Jersey: Wiley. ISBN 0-471-24195-4. 
  3. "InfoTopo: Topological Information Data Analysis. Deep statistical unsupervised and supervised learning - File Exchange - Github". github.com/pierrebaudot/infotopopy/. Retrieved 26 September 2020.

de:Bedingte Entropie#Blockentropie