“无混淆性 Unconfoundedness”的版本间的差异
第4行: | 第4行: | ||
}} | }} | ||
− | '''无混淆性 Unconfoundedness''',也被叫做'''可忽略性 ignorability''',由Donald Rubin在1970年代提出<ref>Rubin, Donald (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". ''The Annals of Statistics''</ref>。1983年Donald Rubin和Paul | + | '''无混淆性 Unconfoundedness''',也被叫做'''可忽略性 ignorability''',由Donald Rubin在1970年代提出<ref>Rubin, Donald (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". ''The Annals of Statistics''</ref>。1983年Donald Rubin和Paul Rosenbaum提出了强可忽略分配机制,即给定足够多的基线协变量后潜在结果的联合值与分配独立: |
+ | (Y(0),Y(1))⊥W|X. | ||
+ | 其中Y(0)和Y(1)是两个潜在结果,W是处理分配,X是协变量<ref>Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"</ref>。类似地,还有弱可忽略分配机制,只需:Y(w)⊥W|X | ||
+ | |||
+ | 对w=0和1成立。可忽略性也是缺失数据分析中的常见假设。 | ||
定义倾向性得分e(x)=P(W=1|X=x),用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,(Y(0),Y(1))⊥W|e(X)因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。 | 定义倾向性得分e(x)=P(W=1|X=x),用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,(Y(0),Y(1))⊥W|e(X)因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。 | ||
− | + | ||
+ | 无混淆性是因果推断的基础。当无混淆性成立时,平均因果作用可以识别。 | ||
+ | |||
+ | E[Y(w)]=E{E[Y(w)│X]}=E{E[Y(w)│X,W=w]}=E{E[Y│X,W=w]} | ||
+ | |||
+ | 平均因果作用的估计方法包括逆概率加权、回归、匹配等一系列方法,甚至可以构造双稳健的估计方法,使得只要倾向得分模型或回归模型之一设定正确,就能得到平均因果作用的相合估计。 | ||
由于无混淆性涉及潜在结果,因此不可检验。Donald Rubin提出了几种间接验证无混淆性的方法,包括伪结局、伪处理方法,以及基于子集可忽略性的方法<ref>Imbens & Rubin 2015书</ref>。Rosenbaum针对无混淆性提出了敏感性分析<ref>Rosembaum,Design of Observational Studies书</ref>。 | 由于无混淆性涉及潜在结果,因此不可检验。Donald Rubin提出了几种间接验证无混淆性的方法,包括伪结局、伪处理方法,以及基于子集可忽略性的方法<ref>Imbens & Rubin 2015书</ref>。Rosenbaum针对无混淆性提出了敏感性分析<ref>Rosembaum,Design of Observational Studies书</ref>。 | ||
+ | |||
2022年6月3日 (五) 16:22的版本
无混淆性 Unconfoundedness,也被叫做可忽略性 ignorability,由Donald Rubin在1970年代提出[1]。1983年Donald Rubin和Paul Rosenbaum提出了强可忽略分配机制,即给定足够多的基线协变量后潜在结果的联合值与分配独立:
(Y(0),Y(1))⊥W|X.
其中Y(0)和Y(1)是两个潜在结果,W是处理分配,X是协变量[2]。类似地,还有弱可忽略分配机制,只需:Y(w)⊥W|X
对w=0和1成立。可忽略性也是缺失数据分析中的常见假设。
定义倾向性得分e(x)=P(W=1|X=x),用以表示个体被分配到处理组的概率,可以证明,当无混淆性成立时,(Y(0),Y(1))⊥W|e(X)因此只需要控制一个一维变量,就能实现潜在结果与处理分配相互独立。
无混淆性是因果推断的基础。当无混淆性成立时,平均因果作用可以识别。
E[Y(w)]=E{E[Y(w)│X]}=E{E[Y(w)│X,W=w]}=E{E[Y│X,W=w]}
平均因果作用的估计方法包括逆概率加权、回归、匹配等一系列方法,甚至可以构造双稳健的估计方法,使得只要倾向得分模型或回归模型之一设定正确,就能得到平均因果作用的相合估计。
由于无混淆性涉及潜在结果,因此不可检验。Donald Rubin提出了几种间接验证无混淆性的方法,包括伪结局、伪处理方法,以及基于子集可忽略性的方法[3]。Rosenbaum针对无混淆性提出了敏感性分析[4]。
Judea Pearl提出用后门准则来判断无混淆性。在有向无环图中,如果控制一组条件变量,处理变量和结果变量的所有后门路径被阻断,则无混淆性成立。然而实际上基于有向无环图判断无混淆性的做法并不严格。Thomas Richardson和James Robins曾提出单一世界干预图(SWIG),可将处理分配变量、干预值和潜在结果表现在因果图上。在单一世界干预图中,处理分配变量和干预值被阻断,通过检查处理分配变量与潜在结果的后门是否被阻断,可以更严格地判断无混淆性[5]。
参考文献
- ↑ Rubin, Donald (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". The Annals of Statistics
- ↑ Rubin, Donald B.; Rosenbaum, Paul R. (1983). "The Central Role of the Propensity Score in Observational Studies for Causal Effects"
- ↑ Imbens & Rubin 2015书
- ↑ Rosembaum,Design of Observational Studies书
- ↑ Hernan & Robins,What if书