“Elias Bareinboim”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第30行: 第30行:
  
 
Bareinboim是哥伦比亚大学计算机系副教授、因果人工智能实验室主任。他曾在加利福尼亚大学洛杉矶分校获得计算机科学博士学位,导师为朱迪亚·珀尔教授。他的研究兴趣包括人工智能、机器学习、统计学、机器人科学、认知科学和科学哲学。
 
Bareinboim是哥伦比亚大学计算机系副教授、因果人工智能实验室主任。他曾在加利福尼亚大学洛杉矶分校获得计算机科学博士学位,导师为朱迪亚·珀尔教授。他的研究兴趣包括人工智能、机器学习、统计学、机器人科学、认知科学和科学哲学。
 +
 +
== 教育经历 ==
 +
• Ph.D. in Computer Science – University of California, Los Angeles (UCLA), 2014. Title: Generalizability in Causal Inference: Theory and Algorithms. Advisor: Judea Pearl.
 +
 +
• B.Sc., M.Sc. in Computer Science – Federal University of Rio de Janeiro (UFRJ), 2007. Title: Descents and nodal load in scale-free networks. Advisor: Valmir C. Barbosa.
 +
 +
== 学术职位 ==
 +
Associate Professor, Computer Science, Columbia University, Summer/2019-now.
 +
 +
• Director, Causal Artificial Intelligence Laboratory. • Member, Data Science Institute.
 +
 +
• Member, Program for Mathematical Genomics (since 2022).
 +
 +
• Assistant Professor, Computer Science, Purdue University, Fall/2015-Spring/2019.
 +
 +
• Director, Causal Artificial Intelligence Laboratory.
 +
 +
Assistant Professor, courtesy appointment, Statistics.
 +
 +
• Faculty Affiliate, Regenstrief Center for Healthcare Engineering.
 +
 +
Postdoctoral Scholar, Cognitive Systems Lab/UCLA, Judea Pearl, Fall/2014-Summer/2015.
 +
 +
Research Assistant, Cognitive Systems Lab/UCLA, Judea Pearl, Fall/2009-Summer/2014.
  
 
== 获奖经历 ==
 
== 获奖经历 ==
 
Bareinboim于2016年被 IEEE 评为“人工智能十大新星”之一,并获得 NSF CAREER Award、ONR Young Investigator Award、Dan David Prize Scholarship、AAAI 2014优秀论文奖和UAI 2019最佳论文奖。
 
Bareinboim于2016年被 IEEE 评为“人工智能十大新星”之一,并获得 NSF CAREER Award、ONR Young Investigator Award、Dan David Prize Scholarship、AAAI 2014优秀论文奖和UAI 2019最佳论文奖。
 +
 +
• 2022 ONR Young Investigator Award.
 +
 +
• 2021 JP Morgan Faculty Research Award (gift, $120,000).
 +
 +
• 2020 Amazon Research Award (gift, $90,000).
 +
 +
• 2019 UAI Best Paper Award (1 out of 450 papers).
 +
 +
• 2018 NSF Faculty Early Career Development (CAREER) Award. • 2018 Adobe Data Science Research Award (gift, $50,000).
 +
 +
• 2018 UAI Best Student Paper Award (1 out of 337 papers).
 +
 +
• 2018 AAAI Outstanding Paper Award Honorable Mention (2 out of 3800 papers).
 +
 +
• 2017 IBM Open Collaborative Award (gift, $50,000).
 +
 +
• 2016 IEEE AI’s 10 to Watch, Intelligent Systems.
 +
 +
• 2015 ACM Notable Paper, 19th Annual Best of Computing, Computing Reviews.
 +
 +
• 2014 UCLA Edward K. Rice Outstanding Doctoral Student Award (given to a single PhD student in all engineering and applied sciences majors), School of Engineering and Applied Sciences, UCLA.
 +
 +
• 2014 AAAI Outstanding Paper Award (1 out of 1406 papers).
 +
 +
• 2014 UCLA Outstanding Graduating PhD Student (commencement award), Computer Science.
 +
 +
• 2014 Google Outstanding Graduate Research Award, Computer Science, UCLA.
 +
 +
• 2014 Dan David Scholar, Future Dimension: Artificial Intelligence ($15,000), Dan David Foundation.
 +
 +
• 2013 UCLA Dissertation Year Fellowship (DYF) (~$35,000).
 +
 +
• 2012 Yahoo! Key Scientific Challenges Award, area Machine Learning & Statistics ($5,000).
 +
 +
• 2008 UCLA Ph.D.’s Fellowship (~$45,000).
 +
 +
• 2008 Top 10 award – National contest of M.Sc. thesis (2007), Brazilian Computer Society.
 +
 +
• 2008-2012 Ph.D.’s Fellowship, Fulbright – U.S. Dep. of State / CAPES-MEC, declined.
 +
 +
• 2003-2007 Undergraduate’s and Master’s Fellowships, Brazilian Research Council CNPq.
  
 
== 主要文章及著作 ==
 
== 主要文章及著作 ==

2022年6月13日 (一) 21:33的版本

基本信息

Elias Bareinboim
类别 信息
姓名 埃利亚斯·巴伦博伊姆 Elias Bareinboim
国籍 美国
学术任职 哥伦比亚大学因果人工智能实验室主任
母校 学士学位、硕士学位 - 里约热内卢联邦大学 Federal University of Rio de Janeiro

博士学位 - 加利福尼亚大学洛杉矶分校 University of California, Los Angeles

博士导师 朱迪亚·珀尔 Judea Pearl
主要研究方向 因果性与反事实推断,及其在健康与社会科学领域的应用
获奖经历 2016年IEEE智能系统“人工智能十大新星”
个人主页 https://causalai.net/
联系邮箱 [[1]]
个人cv chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://causalai.net/cv-bareinboim.pdf

Bareinboim是哥伦比亚大学计算机系副教授、因果人工智能实验室主任。他曾在加利福尼亚大学洛杉矶分校获得计算机科学博士学位,导师为朱迪亚·珀尔教授。他的研究兴趣包括人工智能、机器学习、统计学、机器人科学、认知科学和科学哲学。

教育经历

• Ph.D. in Computer Science – University of California, Los Angeles (UCLA), 2014. Title: Generalizability in Causal Inference: Theory and Algorithms. Advisor: Judea Pearl.

• B.Sc., M.Sc. in Computer Science – Federal University of Rio de Janeiro (UFRJ), 2007. Title: Descents and nodal load in scale-free networks. Advisor: Valmir C. Barbosa.

学术职位

Associate Professor, Computer Science, Columbia University, Summer/2019-now.

• Director, Causal Artificial Intelligence Laboratory. • Member, Data Science Institute.

• Member, Program for Mathematical Genomics (since 2022).

• Assistant Professor, Computer Science, Purdue University, Fall/2015-Spring/2019.

• Director, Causal Artificial Intelligence Laboratory.

Assistant Professor, courtesy appointment, Statistics.

• Faculty Affiliate, Regenstrief Center for Healthcare Engineering.

Postdoctoral Scholar, Cognitive Systems Lab/UCLA, Judea Pearl, Fall/2014-Summer/2015.

Research Assistant, Cognitive Systems Lab/UCLA, Judea Pearl, Fall/2009-Summer/2014.

获奖经历

Bareinboim于2016年被 IEEE 评为“人工智能十大新星”之一,并获得 NSF CAREER Award、ONR Young Investigator Award、Dan David Prize Scholarship、AAAI 2014优秀论文奖和UAI 2019最佳论文奖。

• 2022 ONR Young Investigator Award.

• 2021 JP Morgan Faculty Research Award (gift, $120,000).

• 2020 Amazon Research Award (gift, $90,000).

• 2019 UAI Best Paper Award (1 out of 450 papers).

• 2018 NSF Faculty Early Career Development (CAREER) Award. • 2018 Adobe Data Science Research Award (gift, $50,000).

• 2018 UAI Best Student Paper Award (1 out of 337 papers).

• 2018 AAAI Outstanding Paper Award Honorable Mention (2 out of 3800 papers).

• 2017 IBM Open Collaborative Award (gift, $50,000).

• 2016 IEEE AI’s 10 to Watch, Intelligent Systems.

• 2015 ACM Notable Paper, 19th Annual Best of Computing, Computing Reviews.

• 2014 UCLA Edward K. Rice Outstanding Doctoral Student Award (given to a single PhD student in all engineering and applied sciences majors), School of Engineering and Applied Sciences, UCLA.

• 2014 AAAI Outstanding Paper Award (1 out of 1406 papers).

• 2014 UCLA Outstanding Graduating PhD Student (commencement award), Computer Science.

• 2014 Google Outstanding Graduate Research Award, Computer Science, UCLA.

• 2014 Dan David Scholar, Future Dimension: Artificial Intelligence ($15,000), Dan David Foundation.

• 2013 UCLA Dissertation Year Fellowship (DYF) (~$35,000).

• 2012 Yahoo! Key Scientific Challenges Award, area Machine Learning & Statistics ($5,000).

• 2008 UCLA Ph.D.’s Fellowship (~$45,000).

• 2008 Top 10 award – National contest of M.Sc. thesis (2007), Brazilian Computer Society.

• 2008-2012 Ph.D.’s Fellowship, Fulbright – U.S. Dep. of State / CAPES-MEC, declined.

• 2003-2007 Undergraduate’s and Master’s Fellowships, Brazilian Research Council CNPq.

主要文章及著作

Bareinboim的研究主要关注因果推断和其在健康与社会科学、人工智能、机器学习方向的应用。他的研究特别关注如何在异构和有偏的数据中得出稳健、可泛化的因果和反事实结论,这其中包括了混淆偏差、选择偏差和可迁移性问题。他的工作为数据融合问题提出了第一个通用解决方案,为组合在不同实验条件下生成并受到各种偏差困扰的数据集提供了实用的方法。最近,Bareinboim 一直在探索因果推理与决策(包括强化学习)和可解释性(包括公平性分析)的交叉点。 Bareinboim 获得了博士学位。来自加州大学洛杉矶分校,在那里他得到了 Judea Pearl 的建议。

2021

Partial Counterfactual Identification from Observational and Experimental Data

J. Zhang, J. Tian, E. Bareinboim.

Columbia CausalAI Laboratory, Technical Report (R-78), Jun, 2021.

Effect Identification in Causal Diagrams with Clustered Variables

T. Anand, A. Ribeiro, J. Tian, E. Bareinboim.

Columbia CausalAI Laboratory, Technical Report (R-77), Jun, 2021.

The Causal-Neural Connection: Expressiveness, Learnability, and Inference

K. Xia, K. Lee, Y. Bengio, E. Bareinboim.

NeurIPS-21. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-80), Jun, 2021.

Nested Counterfactual Identification from Arbitrary Surrogate Experiments

J. Correa, S. Lee, E. Bareinboim.

NeurIPS-21. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-79), Jun, 2021.

Sequential Causal Imitation Learning with Unobserved Confounders

D. Kumor, J. Zhang, E. Bareinboim.

NeurIPS-21. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-76), Jun, 2021.

Oral Presentation (<1%, out of 9122 papers).

Double Machine Learning Density Estimation for Local Treatment Effects with Instruments

Y. Jung, J. Tian, E. Bareinboim.

NeurIPS-21. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-75), Jun, 2021.

Spotlight Presentation (<3%, out of 9122 papers).

Causal Identification with Matrix Equations

S. Lee, E. Bareinboim.

NeurIPS-21. In Proceedings of the 35th Annual Conference on Neural Information Processing Systems, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-70), Jun, 2021.

Oral Presentation (<1%, out of 9122 papers).

Causal Inference and Data Fusion: Towards an Accelerated Process of Scientific Discovery

A. Ribeiro, E. Bareinboim.

OECD-22. Organisation for Economic Co-operation and Development, Volume “AI and the productivity of science”, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-73), Apr, 2022.

Non-Parametric Methods for Partial Identification of Causal Effects

J. Zhang, E. Bareinboim.

Columbia CausalAI Laboratory, Technical Report (R-72), Feb, 2021.

Estimating Identifiable Causal Effects on Markov Equiv. Class through Double Machine Learning

Y. Jung, J. Tian, E. Bareinboim.

ICML-21. In Proceedings of the 38th International Conference on Machine Learning, 2020.

Columbia CausalAI Laboratory, Technical Report (R-71), Feb, 2021.

Estimating Identifiable Causal Effects through Double Machine Learning

Y. Jung, J. Tian, E. Bareinboim.

AAAI-21. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021.

Columbia CausalAI Laboratory, Technical Report (R-69), Dec, 2020.

Bounding Causal Effects on Continuous Outcomes

J. Zhang, E. Bareinboim.

AAAI-21. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, 2021.

Columbia CausalAI Laboratory, Technical Report (R-61), Jun, 2020.

2020

General Transportability of Soft Interventions: Completeness Results

J. Correa, E. Bareinboim.

NeurIPS-20. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems.

Columbia CausalAI Laboratory, Technical Report (R-68), Jun, 2020.

Causal Discovery from Soft Interventions with Unknown Targets: Characterization & Learning

A. Jaber, M. Kocaoglu, K. Shanmugam, E. Bareinboim.

NeurIPS-20. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems.

Columbia CausalAI Laboratory, Technical Report (R-67), Jun, 2020.

Causal Imitation Learning with Unobserved Confounders

J. Zhang, D. Kumor, E. Bareinboim.

NeurIPS-20. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems.

Columbia CausalAI Laboratory, Technical Report (R-66), Jun, 2020.

Oral Presentation (105 out of 9454 papers).

Can Humans Be Out of the Loop?

J. Zhang, E. Bareinboim.

CleaR-22. In Proceedings of the 1st Conference on Causal Learning and Reasoning, forthcoming.

Columbia CausalAI Laboratory, Technical Report (R-64), Jun, 2020.

Characterizing Optimal Mixed Policies: Where to Intervene, What to Observe

S. Lee, E. Bareinboim.

NeurIPS-20. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems.

Columbia CausalAI Laboratory, Technical Report (R-63), Jun, 2020.

Learning Causal Effects via Weighted Empirical Risk Minimization

Y. Jung, J. Tian, E. Bareinboim.

NeurIPS-20. In Proceedings of the 34th Annual Conference on Neural Information Processing Systems.

Columbia CausalAI Laboratory, Technical Report (R-62), Jun, 2020.

On Pearl’s Hierarchy and the Foundations of Causal Inference

E. Bareinboim, J. Correa, D. Ibeling, T. Icard.

ACM-20. In Probabilistic and Causal Inference: The Works of Judea Pearl (ACM, Special Turing Series), pp. 507-556, 2022.

Columbia CausalAI Laboratory, Technical Report (R-60), Jul, 2020.

Causal Effect Identifiability under Partial-Observability

S. Lee, E. Bareinboim.

ICML-20. In Proceedings of the 37th International Conference on Machine Learning, 2020.

Columbia CausalAI Laboratory, Technical Report (R-58), Jun, 2020.

Designing Optimal Dynamic Treatment Regimes: A Causal Reinforcement Learning Approach

J. Zhang, E. Bareinboim.

ICML-20. In Proceedings of the 37th International Conference on Machine Learning, 2020.

Columbia CausalAI Laboratory, Technical Report (R-57), Jun, 2020.

Efficient Identification in Linear Structural Causal Models with Auxiliary Cutsets

D. Kumor, C. Cinelli, E. Bareinboim.

ICML-20. In Proceedings of the 37th International Conference on Machine Learning, 2020.

Columbia CausalAI Laboratory, Technical Report (R-56), Jun, 2020.

A Calculus For Stochastic Interventions: Causal Effect Identification and Surrogate Experiments

J. Correa, E. Bareinboim.

AAAI-20. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

Columbia CausalAI Laboratory, Technical Report (R-55), Nov, 2019.

Estimating Causal Effects Using Weighting-Based Estimators

Y. Jung, J. Tian, E. Bareinboim.

AAAI-20. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

Columbia CausalAI Laboratory, Technical Report (R-54), Nov, 2019.

Generalized Transportability: Synthesis of Experiments from Heterogeneous Domains

S. Lee, J. Correa, E. Bareinboim.

AAAI-20. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

Columbia CausalAI Laboratory, Technical Report (R-53), Nov, 2019.

Identifiability from a Combination of Observations and Experiments

S. Lee, J. Correa, E. Bareinboim.

AAAI-20. In Proceedings of the 34th AAAI Conference on Artificial Intelligence, 2020.

Columbia CausalAI Laboratory, Technical Report (R-52), Nov, 2019.

2019

Causal Inference and Data-Fusion in Econometrics

P. Hünermund, E. Bareinboim.

Columbia CausalAI Laboratory, Technical Report (R-51), Dec, 2019.

Identification of Conditional Causal Effects under Markov Equivalence

A. Jaber, J. Zhang, E. Bareinboim.

NeurIPS-19. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Spotlight Presentation (164 out of 6743 papers).

Columbia CausalAI Laboratory, Technical Report (R-50), Sep, 2019.

Efficient Identification in Linear Structural Causal Models with Instrumental Cutsets

D. Kumor, B. Chen, E. Bareinboim.

NeurIPS-19. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Columbia CausalAI Laboratory, Technical Report (R-49), Oct, 2019.

Near-Optimal Reinforcement Learning in Dynamic Treatment Regimes

J. Zhang, E. Bareinboim.

NeurIPS-19. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Columbia CausalAI Laboratory, Technical Report (R-48), Oct, 2019.

Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions

M. Kocaoglu, A. Jaber, K. Shanmugam, E. Bareinboim.

NeurIPS-19. In Proceedings of the 33rd Annual Conference on Neural Information Processing Systems, 2019.

Columbia CausalAI Laboratory, Technical Report (R-47), Oct, 2019.

General Identifiability with Arbitrary Surrogate Experiments

S. Lee, J. Correa, E. Bareinboim.

UAI-19. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-46), May, 2019.

Best Paper Award (1 out of 450 papers).

From Statistical Transportability to Estimating the Effect of Stochastic Interventions

J. Correa, E. Bareinboim.

IJCAI-19. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-45), May, 2019.

On Causal Identification under Markov Equivalence

A. Jaber, JJ. Zhang, E. Bareinboim.

IJCAI-19. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-44), May, 2019.

Adjustment Criteria for Generalizing Experimental Findings

J. Correa, J. Tian, E. Bareinboim.

ICML-19. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Columbia CausalAI Laboratory, Technical Report (R-43), Apr, 2019.

Causal Identification under Markov Equivalence: Completeness Results

A. Jaber, JJ. Zhang, E. Bareinboim.

ICML-19. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Columbia CausalAI Laboratory, Technical Report (R-42), Apr, 2019.

Sensitivity Analysis of Linear Structural Causal Models

C. Cinelli, D. Kumor, B. Chen, J. Pearl, E. Bareinboim.

ICML-19. In Proceedings of the 36th International Conference on Machine Learning, 2019.

Columbia CausalAI Laboratory, Technical Report (R-41), Apr, 2019.

Structural Causal Bandits with Non-manipulable Variables

S. Lee, E. Bareinboim.

AAAI-19. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-40), Nov, 2018.

Counterfactual Randomization: Rescuing Experimental Studies from Obscured Confounding

A. Forney, E. Bareinboim.

AAAI-19. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-39), Nov, 2018.

Identification of Causal Effects in the Presence of Selection Bias

J. Correa, J. Tian, E. Bareinboim.

AAAI-19. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019.

Columbia CausalAI Laboratory, Technical Report (R-38), Nov, 2018.

2018

Equality of Opportunity in Classification: A Causal Approach

J. Zhang, E. Bareinboim.

NeurIPS-18. In Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, 2018.

Columbia CausalAI Laboratory, Technical Report (R-37), Oct, 2018.

Structural Causal Bandits: Where to Intervene?

S. Lee, E. Bareinboim.

NeurIPS-18. In Proceedings of the 32nd Annual Conference on Neural Information Processing Systems, 2018.

Columbia CausalAI Laboratory, Technical Report (R-36), Sep, 2018.

Causal Identification under Markov Equivalence

A. Jaber, JJ. Zhang, E. Bareinboim.

UAI-18. In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 2018.

Columbia CausalAI Laboratory, Technical Report (R-35), Aug, 2018.

Best Student Paper Award (1 out of 337 papers).

Non-Parametric Path Analysis in Structural Causal Models

J. Zhang, E. Bareinboim.

UAI-18. In Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 2018.

Columbia CausalAI Laboratory, Technical Report (R-34), May, 2018.

Budgeted Experiment Design for Causal Structure Learning

A. Ghassami, S. Salehkaleybar, N. Kiyavash, E. Bareinboim.

ICML-18. In Proceedings of the 35th International Conference on Machine Learning, 2018.

Columbia CausalAI Laboratory, Technical Report (R-33), May, 2018.

A Graphical Criterion for Effect Identification in Equivalence Classes of Causal Diagrams

A. Jaber, JJ. Zhang, E. Bareinboim.

IJCAI-18. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018.

Columbia CausalAI Laboratory, Technical Report (R-32), May, 2018.

A note on "Generalizability of Study Results (Lesko et al., 2017)"

J. Pearl, E. Bareinboim.

EPI-18. Epidemiology, v. 30(2), pp. 186-188, 2019.

Columbia CausalAI Laboratory, Technical Report (R-31), Apr, 2018.

Fairness in Decision-Making -- The Causal Explanation Formula

J. Zhang, E. Bareinboim.

AAAI-18. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

Columbia CausalAI Laboratory, Technical Report (R-30), Nov, 2017.

Generalized Adjustment Under Confounding and Selection Biases

J. Correa, J. Tian, E. Bareinboim.

AAAI-18. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, 2018.

Columbia CausalAI Laboratory, Technical Report (R-29), Nov, 2017.

Outstanding Paper Award Honorable Mention (2 out of 3800 papers).

近期报道

  • 与 J. Pearl, Y. Bengio, B. Scholkopf, T. Sejnowski 共同组织 NeurIPS-21 的 Workshop "Causal Inference & Machine Learning: Why now?" (WHY-21) 链接.
  • 与 Juan Correa, Duligur Ibeling, Thomas Icard 共同完成 ACM special volume in honor of Judea Pearl 一书中的 On Pearl’s Hierarchy and the Foundations of Causal Inference 章节 链接.
  • 在 ICML-20 发布tutorial Causal Reinforcement Learning,关注因果推断和强化学习的交叉领域 链接.
  • 在哥伦比亚大学发表演讲 Causal Data Science,关注因果推断和数据科学的交叉领域 链接.
  • 与 Sanghack Lee and Juan Correa 共同完成的论文 General Identifiability with Arbitrary Surrogate Experiments 被评为 UAI-19 会议的最佳论文奖 (1/450).
  • 与 J. Pearl, B. Scholkopf, C. Szepesvari, S. Mahadevan, P. Tadepalli 共同组织 AAAI-19 春季研讨会 Beyond Curve Fitting: Causation, Counterfactuals, and Imagination-based AI (WHY-19) 链接.
  • 与 Amin Jaber and Jiji Zhang 共同完成的论文 Causal Identification under Markov Equivalence 被评为 UAI-18 会议的最佳学术论文奖 (1/337).
  • 与 Juan Correa and Jin Tian 共同完成的论文 Generalized Adjustment Under Confounding and Selection Biases 被评为 AAAI-18 会议的优秀论文奖荣誉提名 (2/3800).
  • 成为 Journal of Causal Inference 期刊编委会成员 链接.
  • 协办第7届 UAI Causality Workshop: Learning, Inference, and Decision-Making 链接.
  • 共同主办 2016 ACM SIGKDD Workshop on Causal Discovery 链接.
  • 共同主办 2016 UAI Workshop on Causation: Foundation to Application 链接.

相关链接

个人主页

推特主页

Google Scholar