“Causal Inference for Statistics, Social, and Biomedical Sciences”的版本间的差异
跳到导航
跳到搜索
(建立内容为“待建立”的新页面) |
Zhushuyuan(讨论 | 贡献) (编辑书籍简介) |
||
第1行: | 第1行: | ||
− | + | 此词条由因果科学读书会词条梳理志愿者四月翻译审校,未经专家审核,带来阅读不便,请见谅。 | |
+ | |||
+ | === 书籍简介 === | ||
+ | 本书的基本观点:(1)所有的因果问题都和特点的干预(intervention)或者实验(treatment)相联系。(2)因果问题被视为对潜在结果(potential outcome)的比较,每个潜在结果对应于一个实验水平(或条件)。如果采用相应的实验条件,那么每个潜在结果都将被观察到。因果效应涉及到将实际观察结果与其他潜在结果比较。实际上其他潜在结果无法被观察到。因此,从根本上说,因果推断是一个处理缺失数据的问题。 | ||
+ | |||
+ | 与所有处理缺失数据的问题一样,处理的关键是决定是否被观测到的机制(mechanism)。在因果推断中,被称为分配机制(assignment mechanism)。 | ||
+ | |||
+ | 本书阐述了因果推断方法所依据的基本理念、潜在结果框架及逐步放宽分配机制的假设时的因果推断方法。 |
2022年6月18日 (六) 17:18的版本
此词条由因果科学读书会词条梳理志愿者四月翻译审校,未经专家审核,带来阅读不便,请见谅。
书籍简介
本书的基本观点:(1)所有的因果问题都和特点的干预(intervention)或者实验(treatment)相联系。(2)因果问题被视为对潜在结果(potential outcome)的比较,每个潜在结果对应于一个实验水平(或条件)。如果采用相应的实验条件,那么每个潜在结果都将被观察到。因果效应涉及到将实际观察结果与其他潜在结果比较。实际上其他潜在结果无法被观察到。因此,从根本上说,因果推断是一个处理缺失数据的问题。
与所有处理缺失数据的问题一样,处理的关键是决定是否被观测到的机制(mechanism)。在因果推断中,被称为分配机制(assignment mechanism)。
本书阐述了因果推断方法所依据的基本理念、潜在结果框架及逐步放宽分配机制的假设时的因果推断方法。