“因果森林 Causal Forest”的版本间的差异
跳到导航
跳到搜索
1587causalai(讨论 | 贡献) (因果森林(Causal Forest) 是由Susan Athey、Stefan Wager 于 2015 提出的估计异质处理效应的随机森林算法。) |
1587causalai(讨论 | 贡献) (快速撰写) |
||
第1行: | 第1行: | ||
+ | 因果森林 (Causal Forest) 是由 Wager and Athey [2017] 提出的异质因果效应估计算法。该算法本质上可以理解成通过子采样生成大量不同的因果树,然后取这些树的平均。 类似于随机森林算法,因果森林可以被理解成一种近邻匹配算法,但是用数据驱动的方法来确定样本之间的相似度。 | ||
+ | == 介绍 == | ||
+ | |||
+ | |||
+ | |||
+ | == 算法 == | ||
+ | |||
+ | |||
+ | .... | ||
+ | |||
+ | == 算法实现 == | ||
+ | |||
+ | |||
+ | Python 包 econml 和 R 包 grf 都有实现该算法。 | ||
+ | |||
+ | == 参考文献 == | ||
+ | |||
+ | |||
+ | === Recursive Partitioning for Heterogeneous Causal Effects - arXiv === | ||
+ | ''[Submitted on 5 Apr 2015 (v1), last revised 30 Dec 2015 (this version, v3)]'' | ||
+ | |||
+ | === Estimation and Inference of Heterogeneous Treatment Effects ... === | ||
+ | ''[Submitted on 14 Oct 2015 (v1), last revised 10 Jul 2017 (this version, v4)]'' | ||
+ | |||
+ | === Generalized Random Forests - arXiv === | ||
+ | ''[Submitted on 5 Oct 2016 (v1), last revised 5 Apr 2018 (this version, v4)]'' | ||
+ | |||
+ | === Machine Learning Methods Economists Should Know About === | ||
+ | ''[Submitted on 24 Mar 2019]'' | ||
+ | |||
+ | == 编者推荐 == |
2022年7月7日 (四) 22:27的版本
因果森林 (Causal Forest) 是由 Wager and Athey [2017] 提出的异质因果效应估计算法。该算法本质上可以理解成通过子采样生成大量不同的因果树,然后取这些树的平均。 类似于随机森林算法,因果森林可以被理解成一种近邻匹配算法,但是用数据驱动的方法来确定样本之间的相似度。
介绍
算法
....
算法实现
Python 包 econml 和 R 包 grf 都有实现该算法。
参考文献
Recursive Partitioning for Heterogeneous Causal Effects - arXiv
[Submitted on 5 Apr 2015 (v1), last revised 30 Dec 2015 (this version, v3)]
Estimation and Inference of Heterogeneous Treatment Effects ...
[Submitted on 14 Oct 2015 (v1), last revised 10 Jul 2017 (this version, v4)]
Generalized Random Forests - arXiv
[Submitted on 5 Oct 2016 (v1), last revised 5 Apr 2018 (this version, v4)]
Machine Learning Methods Economists Should Know About
[Submitted on 24 Mar 2019]