“本征微观态”的版本间的差异
小 (→系综(统计系综)) |
小 (→注释) |
||
第66行: | 第66行: | ||
= 注释 = | = 注释 = | ||
+ | {{reflist|group=note}} | ||
= 参考资料 = | = 参考资料 = | ||
<references />https://mp.weixin.qq.com/s/ehGrm1FPlkq7b6KATmIhTw | <references />https://mp.weixin.qq.com/s/ehGrm1FPlkq7b6KATmIhTw |
2022年9月6日 (二) 14:47的版本
理论背景
系综(统计系综)
如果我们用概率来描述热系统,采用的方法一般是,设想一次又一次重复一个实验来测量一个系统的一种性质,因为我们无法控制它们的微观性质(由系统的微观态所描述),在尝试表述这个方法时,乔赛亚·威拉德·吉布斯(Josiah Willard Gibbs)在1902年提出了系综的概念 [1]。这是一种理想化的方法,在该方法中他考虑对系统进行大量想象的“影印”,其中每一个都代表了该系统所处的一个可能状态。
在物理学,特别是在统计物理学中,在统计物理中,系综代表一定条件下,一个体系的大量可能状态的集合。换句话说,系综是系统状态的一个概率分布。对一相同性质的体系,其微观状态(比如每个粒子的位置和速度)仍然可以大不相同。更进一步地说,统计系综是统计力学中用来描述单一系统的一组粒子系统 [2]。
下面举一个例子来说明这样的表述。
考虑抛一枚硬币的实验,这样一个简单的实验只有两种可能的结果,“正面”或“反面”。原则上,如果我们能够确切地知道硬币是如何被抛出的,以及与硬币和桌子相互作用力等等信息,那么只要根据经典力学的理论进行一定的计算,实验的结果应该是完全可以预测的。实际上,关于这个实验详细的、精确的信息是无法获取的。所以对于某一次实验结果,我们不可能作出唯一的预测,可是实验的统计表述却是比较简单的。
我们只要考虑由很大数目,[math]\displaystyle{ N }[/math]枚相似的硬币组成的一个系综,当这些硬币以同样的方式抛出,我们可以数出结果中硬币正反面的个数,进而得到正面的概率[math]\displaystyle{ p }[/math]和反面的概率[math]\displaystyle{ q }[/math]。统计理论希望能够预测这些概率。
现在考虑稍微复杂一点的掷N枚硬币的实验,由于抛掷任何一枚硬币都有两个可能的结果,那么掷N枚硬币就可以出现[math]\displaystyle{ 2×2×2×…×2=2^N }[/math]个可能结果中的任何一个。如果不是只讨论一组[math]\displaystyle{ N }[/math]枚硬币,而是考虑[math]\displaystyle{ N }[/math]个这样的组(每组有[math]\displaystyle{ N }[/math]枚硬币)所组成的系综,每组都以相似的方式抛掷硬币,那么值得我们探究的问题便是,[math]\displaystyle{ 2^N }[/math]个可能结果中,任何一个特殊的结果在系综中出现的概率为多大。
如果每一时刻体系的统计系综中,呈现任一特殊事件的体系数目是一样的(或等价地表示为:如果这个系综中任一特殊事件出现的概率与时间无关),那么就说这个系综是与时间无关的。这样的统计描述就为平衡提供一个非常清楚的定义:如果孤立宏观体系的一个统计系综是与时间无关的,那么这样一个体系就称为处于平衡。
吉布斯定义了三种主要的系综[1]:
(1)微正则系综(microcanonical ensemble):系综里的每个体系具有相同的能量[1]。
(2)正则系综(canonical ensemble):系综里的各体系可以和外界环境交换能量,这种能量交换将确定(并且定义)了系统的温度[1]。
(3)巨正则系综(grand canonical ensemble):是正则系综的推广,各体系可以和外界环境交换能量和粒子,但系综内各个体系有相同的温度和化学势[1]。
相变
临界点与临界现象
平衡态与非平衡态
定义
演化的傅里叶谱分析
本征微观态和相变的凝聚
本征微观态重整化群理论
重整化群背景
本征微观态的重整化群变换
在Ising模型上的应用
应用
在平衡系统中
在地球系统中
在金融系统中
在生命系统中
在交通系统中
注释
- ↑ In some cases the overcounting error is benign. An example is the choice of coordinate system used for representing orientations of three-dimensional objects. A simple encoding is the 3-sphere (e. g., unit quaternions) which is a double cover—each physical orientation can be encoded in two ways. If this encoding is used without correcting the overcounting, then the entropy will be higher by k log 2 per rotatable object and the chemical potential lower by kT log 2. This does not actually lead to any observable error since it only causes unobservable offsets.
参考资料
- ↑ 1.0 1.1 1.2 1.3 1.4 Gibbs, Josiah Willard (1902). Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.
- ↑ Rennie, Richard; Jonathan Law (2019). Oxford Dictionary of Physcis. pp. 458 ff. ISBN 978-0198821472.