“Causation, Prediction, and Search”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
第16行: 第16行:
 
书名:Causation, Prediction, and Search
 
书名:Causation, Prediction, and Search
  
作者:Peter Spirtes / Clark Glymour / Richard Scheines  
+
作者:[https://wiki.swarma.org/index.php/Peter_Spirtes Peter Spirtes] / Clark Glymour / Richard Scheines  
  
 
=作者介绍=
 
=作者介绍=

2022年9月29日 (四) 09:49的版本

Causation, Prediction, and Search

内容简介-英文

     What assumptions and methods allow us to turn observations into causal knowledge, and how can even incomplete causal knowledge be used in planning and prediction to influence and control our environment? In this book Peter Spirtes, Clark Glymour, and Richard Scheines address these questions using the formalism of Bayes networks, with results that have been applied in diverse areas of research in the social, behavioral, and physical sciences.The authors show that although experimental and observational study designs may not always permit the same inferences, they are subject to uniform principles. They axiomatize the connection between causal structure and probabilistic independence, explore several varieties of causal indistinguishability, formulate a theory of manipulation, and develop asymptotically reliable procedures for searching over equivalence classes of causal models, including models of categorical data and structural equation models with and without latent variables.The authors show that the relationship between causality and probability can also help to clarify such diverse topics in statistics as the comparative power of experimentation versus observation, Simpson's paradox, errors in regression models, retrospective versus prospective sampling, and variable selection. The second edition contains a new introduction and an extensive survey of advances and applications that have appeared since the first edition was published in 1993.

内容简介-中文

什么样的假设和方法可以让我们将观察结果转化为因果知识,以及不完整的因果知识如何能够用于规划和预测,以影响和控制我们的环境?

在这本书中,Peter spirtes, clark glymour 和 Richard scheines 使用贝叶斯网络的形式来解决这些问题,其结果已经应用于社会、行为和物理科学的不同研究领域。

作者指出,尽管实验和观察性研究设计可能不总是允许相同的推论,但它们遵循统一的原则。他们公理化了因果结构和概率独立性之间的联系,探索了几种不同的因果不可区分性,制定了一种操作理论,并开发了在因果模型的等价类中搜索的渐近可靠过程,包括有潜在变量和没有潜在变量的分类数据模型和结构方程模型。作者表明,因果关系和概率之间的关系也可以帮助澄清统计学中的不同主题,如:实验与观察的比较效力(power),辛普森悖论,回归模型中的错误,回顾性与前瞻性抽样,以及变量选择。

第二版载有一个新的导言和对自1993年第一版出版以来出现的进展和应用的广泛调查。

基本信息

书名:Causation, Prediction, and Search

作者:Peter Spirtes / Clark Glymour / Richard Scheines

作者介绍

内容目录

1 Introduction and Advertisement

2 Formal Preliminaries

3 Causation and Prediction: Axioms and Explications

4 Statistical Indistinguishability

5 Discovery Algorithms for Causally Sufficient Structures

6 Discovery Algorithms without Causal Sufficiency

7 Prediction

8 Regression, Causation, and Prediction

9 The Design of Empirical Studies

10 The Structure of the Unobserved

11 Elaborating Linear Theories with Unmeasured Variables

12 Prequels and Sequels

13 Proofs of Theorems

资源获取

相关wiki

编者推荐

集智俱乐部读书会推荐

因果推理与机器学习读书会

大数据时代的下一场变革——因果革命正在酝酿之中,通过融合因果推理和机器学习而构建出来的Causal AI系统,有望奠定强人工智能的基石。集智俱乐部联合北京智源人工智能研究院,邀请了一批对因果科学与Casual AI感兴趣的研究者,开展为期2-3个月的系列线上读书会,研读经典和前沿论文,并尝试集体撰写一部书籍。

集智俱乐部相关文章

图模型与因果推理基础- SCM框架和Do-Calculus

本文主要串讲了Pearl因果识别框架的基础知识,包括图模型、结构因果模型的范式,三种识别策略,以及如何运用do- calculus的三种规则来进行因果识别。本篇内容整理自因果科学读书会第一季。

第二种想象力:社会科学中的因果推断

本文中南京大学陈云松教授从“因果”和“数据”两个维度,用因果推断、大数据和机器学习等方面的系列研究案例,阐释第二种想象力的八类思维面向。

因果科学的学习路线图

本文主要根据对因果推断引擎的介绍,为关注因果科学领域的初学者提供了完整的学习路径

本中文词条由因果读书会词条梳理志愿者一尾鱼编辑,未经专家审核,带来阅读不便,请见谅。

本词条内容源自wikipedia及公开资料,遵守 CC3.0协议。