如果神经网络的输入<math> X=(x_1,x_2,\cdot\cdot\cdot,x_n)\in [-L,L]^n</math>,则表示X定义在一个大小为L的超立方体上,其中L是一个非常大的整数。输出为<math>Y=(y_1,y_2,\cdot\cdot\cdot,y_m)</math>, <math>Y=\mu(X)</math>。这里µ是神经网络实现的确定性映射:<math>\mu: \mathcal{R}^n\rightarrow \mathcal{R}^m</math>,它在X处的雅可比矩阵是<math>\partial_{X'} \mu(X)\equiv \left\{\frac{\partial \mu_i(X')}{\partial X'_j}\left|_{X'=X}\right.\right\}_{nm}</math>。如果神经网络可以看作是给定X条件下的高斯分布,则神经网络的有效信息(EI)可以用以下方法计算: | 如果神经网络的输入<math> X=(x_1,x_2,\cdot\cdot\cdot,x_n)\in [-L,L]^n</math>,则表示X定义在一个大小为L的超立方体上,其中L是一个非常大的整数。输出为<math>Y=(y_1,y_2,\cdot\cdot\cdot,y_m)</math>, <math>Y=\mu(X)</math>。这里µ是神经网络实现的确定性映射:<math>\mu: \mathcal{R}^n\rightarrow \mathcal{R}^m</math>,它在X处的雅可比矩阵是<math>\partial_{X'} \mu(X)\equiv \left\{\frac{\partial \mu_i(X')}{\partial X'_j}\left|_{X'=X}\right.\right\}_{nm}</math>。如果神经网络可以看作是给定X条件下的高斯分布,则神经网络的有效信息(EI)可以用以下方法计算: |