更改

跳到导航 跳到搜索
添加13字节 、 2024年9月9日 (星期一)
第192行: 第192行:  
{{NumBlk|:|<blockquote><math>\phi_q^† = \psi_\alpha^{-1} \circ \chi_q^†</math></blockquote>|{{EquationRef|11}}}}
 
{{NumBlk|:|<blockquote><math>\phi_q^† = \psi_\alpha^{-1} \circ \chi_q^†</math></blockquote>|{{EquationRef|11}}}}
 
其中,<math>\psi_{\alpha}^{-1}</math> 是 <math>\psi_\alpha</math> 的逆函数,<math> \chi_q^† : \mathbb{R}^q \rightarrow \mathbb{R}^p</math> 定义为:对于任意 <math>\mathbf{x} \in \mathbb{R}^p</math>,有
 
其中,<math>\psi_{\alpha}^{-1}</math> 是 <math>\psi_\alpha</math> 的逆函数,<math> \chi_q^† : \mathbb{R}^q \rightarrow \mathbb{R}^p</math> 定义为:对于任意 <math>\mathbf{x} \in \mathbb{R}^p</math>,有
{{NumBlk|:|<blockquote><math>\chi_q^†(\mathbf{x}_q \bigoplus \mathbf{z}_{p-q})</math></blockquote>|{{EquationRef|12}}}}
+
{{NumBlk|:|<blockquote><math>\chi_q^†(\mathbf{x}_q)=\mathbf{x}_q \bigoplus \mathbf{z}_{p-q}</math></blockquote>|{{EquationRef|12}}}}
 
其中,<math>\mathbf{z}_{p-q} \sim \mathcal{N}(0, \mathcal{I}_{p-q})</math> 是 <math>p-q</math> 维的高斯随机噪声,<math>\mathcal{I}_{p-q}</math> 是同维度的单位矩阵。这样可以结合 <math>\mathbf{x}_q</math> 和一个来自 <math>p-q</math> 维标准正态分布的随机样本 <math>\mathbf{z}_{p-q}</math> 生成微观状态。
 
其中,<math>\mathbf{z}_{p-q} \sim \mathcal{N}(0, \mathcal{I}_{p-q})</math> 是 <math>p-q</math> 维的高斯随机噪声,<math>\mathcal{I}_{p-q}</math> 是同维度的单位矩阵。这样可以结合 <math>\mathbf{x}_q</math> 和一个来自 <math>p-q</math> 维标准正态分布的随机样本 <math>\mathbf{z}_{p-q}</math> 生成微观状态。
  
786

个编辑

导航菜单