更改

添加208字节 、 2024年9月15日 (星期日)
→‎混沌动力学实例 先开个子标题,目的是激励one通读原文献
第229行: 第229行:  
[[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]]
 
[[文件:逻辑斯谛曲线.jpg|居中|无框|300x300px|替代=]]
 
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
 
上图为迭代函数<math>f(x) = rx(1-x)</math>中<math>r</math>与<math>x</math>的关系图,当<math>r<3.5699...</math>时函数存在倍周期现象,当<math>r>3.5699...</math>时会出现混沌现象。若要识别混沌中的有序结构,就需要对<math>x</math>进行粗粒化操作,方法是通过二元分割观察轨迹<math>\mathbf{x}=x_0x_1x_2x_3\ldots </math> ,将其转换为离散序列<math>\mathcal{P}=\{x_n\in[0,x_c)\Rightarrow s=0,x_n\in[x_c,1]\Rightarrow s=1\} </math>,这种划分是“生成”的,这意味着足够长的二进制序列来自任意小的初始条件间隔。因此,可以使用粗粒化的观测<math>\mathcal{P} </math>来研究逻辑斯谛映射中的信息处理。
 +
 +
=== 子实例一 ===
 +
 +
文献<ref name=":1"></ref>中关于层次学习专门开了第五章,下面有4小节。前面两小节分别讲了混沌和不确定3-4个例子,都有着广泛的借鉴意义。
    
==参考文献==
 
==参考文献==
470

个编辑