更改

跳到导航 跳到搜索
添加277字节 、 2024年10月17日 (星期四)
第139行: 第139行:  
首先,公式整体可以看作是路径1的宏观动力学,描述了系统的宏观状态的转移概率。
 
首先,公式整体可以看作是路径1的宏观动力学,描述了系统的宏观状态的转移概率。
   −
系统的微观状态<math>s^{(t)}</math>属于<math>A_k</math>这个概念里包含了系统的宏观状态<math>A^{(t)}</math>等于<math>A_k</math>这个概念,所以<math>Pr_{\pi}[s^{(t)} \in A_m | s^{(t-1)} \in A_k] = Pr_{\pi}[A^{(t)} = A_m | A^{(t-1)} = A_k]</math>。
+
“系统的微观状态<math>s^{(t)}</math>属于<math>A_k</math>”里包含了“系统的宏观状态<math>A^{(t)}</math>等于<math>A_k</math>”这个概念,所以<math>Pr_{\pi}[s^{(t)} \in A_m | s^{(t-1)} \in A_k] = Pr_{\pi}[A^{(t)} = A_m | A^{(t-1)} = A_k]</math>。
    
同时,这个表达式也表达了,当<math>s^{(t)}</math>属于某个宏观状态<math>A_k</math>时,<math>s^{(t+1)}</math>属于哪个宏观状态的意思。从这个角度来看,它走的是路径2的微观动力学,其中<math>\pi</math>为微观初始状态,<math>\{s^{(0)},\ s^{(1)},\ ...\ ,\ s^{(t)}\}</math>为微观动力学(微观动力学的演化过程在这里被省略了),而<math>s^{(t)} \in A_m</math>代表了从微观状态到宏观状态的聚类过程。
 
同时,这个表达式也表达了,当<math>s^{(t)}</math>属于某个宏观状态<math>A_k</math>时,<math>s^{(t+1)}</math>属于哪个宏观状态的意思。从这个角度来看,它走的是路径2的微观动力学,其中<math>\pi</math>为微观初始状态,<math>\{s^{(0)},\ s^{(1)},\ ...\ ,\ s^{(t)}\}</math>为微观动力学(微观动力学的演化过程在这里被省略了),而<math>s^{(t)} \in A_m</math>代表了从微观状态到宏观状态的聚类过程。
第145行: 第145行:  
强调考虑所有初始状态<math>\pi</math>的目的是确保这两种路径在任何时间点给出的微观状态和宏观状态之间的关系是一致的。
 
强调考虑所有初始状态<math>\pi</math>的目的是确保这两种路径在任何时间点给出的微观状态和宏观状态之间的关系是一致的。
   −
无论我们从哪个微观状态<math>s^{(t)}</math>出发,对该<math>s^{(t)}</math>来说,无论是走宏观动力学(路径1)还是微观动力学(路径2),系统的微观状态和宏观状态的对应关系都是相同的,也会以相同的概率到达宏观状态<math>A^{(t+1)}</math>,也就是'''满足了交换律'''。
+
无论我们从哪个微观状态<math>s^{(t)}</math>出发,对该<math>s^{(t)}</math>来说,
 +
 
 +
 
 +
<math>
 +
\begin{aligned}
 +
&Pr_\pi [s^{(t)} \in A_m | s^{(t-1)}\in A_k] \\
 +
&=Pr⁡[A^{(t)} = A_m | A^{(t-1)} = A_k], \forall A_k \in A  \text{(路径1)} \\
 +
&=Pr⁡[s^{(t)}\in A_m | s^{(t-1)}=s_i \in A_k], \forall s_i \in S   \text{(路径2)}
 +
\end{aligned}
 +
</math>
 +
 
 +
 
 +
 
 +
无论是走宏观动力学(路径1)还是微观动力学(路径2),系统的微观状态和宏观状态的对应关系都是相同的,也会以相同的概率到达宏观状态<math>A^{(t+1)}</math>,也就是'''满足了交换律'''。
    
下一个小节我们会给出反例,说明non-lumpable的情况下,式子(3)并不是对所有的<math>\pi</math>都成立。
 
下一个小节我们会给出反例,说明non-lumpable的情况下,式子(3)并不是对所有的<math>\pi</math>都成立。
97

个编辑

导航菜单