为了测试boid模型中不同参数组合下格兰杰涌现性的行为,我在参数空间 α(1, 2, 3) ∈ [0.0, 0.1, …, 1.0] 中计算了每个参数向量的线性和非线性格兰杰涌现性。由于参数α<sub>3</sub>和α<sub>4</sub>都影响同一规则(速度匹配),它们被配对在一起进行评估,并为每个向量进行了三次评估,总共需要 11 × 11 × 11 × 3 = 3993 次评估。图3显示了穿过三维参数空间的三个正交剖面的格兰杰涌现性;在每个剖面中,向量α<sub>H</sub>(条件 H)由绿色线的交点标记。 | 为了测试boid模型中不同参数组合下格兰杰涌现性的行为,我在参数空间 α(1, 2, 3) ∈ [0.0, 0.1, …, 1.0] 中计算了每个参数向量的线性和非线性格兰杰涌现性。由于参数α<sub>3</sub>和α<sub>4</sub>都影响同一规则(速度匹配),它们被配对在一起进行评估,并为每个向量进行了三次评估,总共需要 11 × 11 × 11 × 3 = 3993 次评估。图3显示了穿过三维参数空间的三个正交剖面的格兰杰涌现性;在每个剖面中,向量α<sub>H</sub>(条件 H)由绿色线的交点标记。 |