更改

跳到导航 跳到搜索
第36行: 第36行:  
</math>并不一定是满足归一化条件的合法TPM(即矩阵中每个元素都大于等于0,小于等于1,且每一行满足加和为1的条件)。'''2.''' 如前所述,若P满足动力学可逆性,则P必为置换矩阵。  
 
</math>并不一定是满足归一化条件的合法TPM(即矩阵中每个元素都大于等于0,小于等于1,且每一行满足加和为1的条件)。'''2.''' 如前所述,若P满足动力学可逆性,则P必为置换矩阵。  
   −
所有置换矩阵的行向量都是独热向量(one-hot vector)(即只有一个元素是1,其余元素均为零的向量)。这一特性可以被矩阵P的[[弗罗贝尼乌斯范数]](Frobenius norm)刻画。事实上,当且仅当P的行向量是独热向量的时候,矩阵P的弗罗贝尼乌斯范数取最大值。因此,我们可以借由矩阵P的秩r和矩阵的弗罗贝尼乌斯范数,我们可以找到P的近似动力学可逆性与矩阵奇异值之间的联系。
+
所有置换矩阵的行向量都是独热向量(one-hot vector)(即只有一个元素是1,其余元素均为零的向量)。这一特性可以被矩阵P的[[弗罗贝尼乌斯范数]](Frobenius norm)刻画。事实上,当且仅当P的行向量是独热向量的时候,矩阵P的弗罗贝尼乌斯范数取最大值。因此,我们可以由矩阵P的秩r和矩阵的弗罗贝尼乌斯范数,我们可以找到P的近似动力学可逆性与矩阵奇异值之间的联系。
    
首先,矩阵的秩可以被写作:
 
首先,矩阵的秩可以被写作:
2,440

个编辑

导航菜单