“自组织理论”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
(Moved page from wikipedia:en:Self-organization (history))
(没有差异)

2020年5月6日 (三) 14:35的版本

此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。

Self-organization in micron-sized Nb3O7(OH) cubes during a hydrothermal treatment at 200 °C. Initially amorphous cubes gradually transform into ordered 3D meshes of crystalline nanowires as summarized in the model below.[1]

200 °c 水热处理。最初的非晶立方体逐渐转变为晶体纳米线的有序三维网格,如下面的模型所概括的。]


Self-organization, also called (in the social sciences) spontaneous order, is a process where some form of overall order arises from local interactions between parts of an initially disordered system. The process can be spontaneous when sufficient energy is available, not needing control by any external agent. It is often triggered by seemingly random fluctuations, amplified by positive feedback. The resulting organization is wholly decentralized, distributed over all the components of the system. As such, the organization is typically robust and able to survive or self-repair substantial perturbation. Chaos theory discusses self-organization in terms of islands of predictability in a sea of chaotic unpredictability.

自我组织,在社会科学中也被称为自发秩序,是一个过程,其中某种形式的整体秩序产生于最初无序系统各部分之间的局部相互作用。当有足够的能量可用时,这个过程可以是自发的,不需要任何外部因素的控制。它经常被看似随机的波动所触发,被正反馈放大。由此产生的组织是完全分散的,分布在系统的所有组成部分。因此,组织通常是健壮的,能够生存或自我修复实质性的扰动。混沌理论从可预测性岛屿的角度来讨论自我组织。


Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Examples of self-organization include crystallization, thermal convection of fluids, chemical oscillation, animal swarming, neural circuits.

自我组织存在于许多物理、化学、生物、机器人和认知系统中。自我组织的例子包括结晶化,流体的热对流,化学振荡,动物群集,神经回路。


Overview

概览 Self-organization is realized[2] in the physics of non-equilibrium processes, and in chemical reactions, where it is often described as self-assembly. The concept has proven useful in biology, from molecular to ecosystem level.[3]

自我组织可以在非平衡过程的物理学中实现,也可以在化学反应中实现,在化学反应中,它通常被描述为自组装。从分子到生态系统,这个概念在生物学上已被证明是有用的。 Cited examples of self-organizing behaviour also appear in the literature of many other disciplines, both in the natural sciences and in the social sciences such as economics or anthropology. Self-organization has also been observed in mathematical systems such as cellular automata.[4] Self-organization is an example of the related concept of emergence.[5]

自组织行为的例子也出现在许多其他学科的文献中,包括自然科学和社会科学,如经济学或人类学。在数学系统如细胞自动机中也观察到了自我组织。自我组织是涌现相关概念的一个例子。


Self-organization relies on four basic ingredients:[6]

自我组织依赖于4种基本成分:

  1. strong dynamical non-linearity, often though not necessarily involving positive and negative feedback

强烈的动态非线性,通常不一定包括正反馈和负反馈

  1. balance of exploitation and exploration

开发与勘探平衡

  1. multiple interactions

多重相互作用

  1. availability of energy (to overcome natural tendency toward entropy, or disorder)

能量的有效性(克服熵或无序的自然倾向)


Principles

原则 The cybernetician William Ross Ashby formulated the original principle of self-organization in 1947.[7][8] It states that any deterministic dynamic system automatically evolves towards a state of equilibrium that can be described in terms of an attractor in a basin of surrounding states. Once there, the further evolution of the system is constrained to remain in the attractor. This constraint implies a form of mutual dependency or coordination between its constituent components or subsystems. In Ashby's terms, each subsystem has adapted to the environment formed by all other subsystems.[7]

1947年,控制论专家威廉·罗斯·艾什比提出了自我组织的原理。它指出,任何确定性的动态系统自动演化到一个平衡状态,可以描述为一个吸引子在一个周围的状态盆地。一旦到达那里,系统的进一步演化被限制停留在吸引器中。这种约束意味着其组成部分或子系统之间的相互依赖或协调。按照阿什比的说法,每个子系统都适应了所有其他子系统形成的环境。


The cybernetician Heinz von Foerster formulated the principle of "order from noise" in 1960.[9] It notes that self-organization is facilitated by random perturbations ("noise") that let the system explore a variety of states in its state space. This increases the chance that the system will arrive into the basin of a "strong" or "deep" attractor, from which it then quickly enters the attractor itself. The biophysicist Henri Atlan developed this concept by proposing the principle of "complexity from noise"[10][11] (模板:Lang-fr)[12] first in the 1972 book L'organisation biologique et la théorie de l'information[13] and then in the 1979 book Entre le cristal et la fumée.[14] The thermodynamicist Ilya Prigogine formulated a similar principle as "order through fluctuations"[15] or "order out of chaos".[16] It is applied in the method of simulated annealing for problem solving and machine learning.[17]

控制论家海因茨 · 冯 · 福尔斯特在1960年提出了“噪音中有序”的原则。它指出,随机扰动(“噪声”)促进了自我组织的形成,这使得系统在其状态空间中探索各种各样的状态。这增加了系统到达“强”或“深”吸引子盆地的机会,然后从那里迅速进入吸引子本身。生物物理学家亨利 · 阿特兰首先在1972年出版的《组织生物学和信息理论》一书中提出了“噪音中的复杂性”的原则,然后在1979年出版的《水晶与未来》一书中提出了这一概念。热力学家伊利亚•普里戈金(Ilya Prigogine)提出了类似的原理,即“波动中的有序”或“混沌中的有序”。它被应用于模拟退火解决问题和机器学习的方法中。


History

历史 模板:Further


The idea that the dynamics of a system can lead to an increase in its organization has a long history. The ancient atomists such as Democritus and Lucretius believed that a designing intelligence is unnecessary to create order in nature, arguing that given enough time and space and matter, order emerges by itself.[18]

一个系统的动态性可以导致其组织的增长,这个观点有着悠久的历史。古代的原子论者,如德谟克利特和卢克莱修认为,设计的智慧不需要在自然界中创造秩序,他们认为只要有足够的时间、空间和物质,秩序就会自己出现。


The philosopher René Descartes presents self-organization hypothetically in the fifth part of his 1637 Discourse on Method. He elaborated on the idea in his unpublished work The World.模板:Efn

哲学家任笛卡尔在他1637年的《论方法》的第五部分中假设性地提出了自我组织。他在未出版的著作《世界》中详细阐述了这一观点。


Immanuel Kant used the term "self-organizing" in his 1790 Critique of Judgment, where he argued that teleology is a meaningful concept only if there exists such an entity whose parts or "organs" are simultaneously ends and means. Such a system of organs must be able to behave as if it has a mind of its own, that is, it is capable of governing itself.[19]

康德在他1790年的判断力批判中使用了术语“自组织” ,他认为目的论是一个有意义的概念,只有当存在这样一个实体,它的组成部分或“器官”同时是目的和手段。这样一个器官系统必须能够表现得好像它有自己的思想,也就是说,它能够管理自己。


/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


Sadi Carnot (1796–1832) and Rudolf Clausius (1822–1888) discovered the second law of thermodynamics in the 19th century. It states that total entropy, sometimes understood as disorder, will always increase over time in an isolated system. This means that a system cannot spontaneously increase its order without an external relationship that decreases order elsewhere in the system (e.g. through consuming the low-entropy energy of a battery and diffusing high-entropy heat).[20][21]

萨迪 · 卡诺(1796-1832)和鲁道夫 · 克劳修斯(1822-1888)在19世纪发现了热力学第二定律。它指出,在一个孤立的系统中,总熵,有时被理解为无序,将总是随着时间的推移而增加。这意味着一个系统不能在没有外部关系的情况下自发地增加其秩序,这种外部关系会降低系统中其他地方的秩序(例如:。通过消耗电池的低熵能量和扩散高熵热)。


18th-century thinkers had sought to understand the "universal laws of form" to explain the observed forms of living organisms. This idea became associated with Lamarckism and fell into disrepute until the early 20th century, when D'Arcy Wentworth Thompson (1860–1948) attempted to revive it.[22]

18世纪的思想家试图理解“形式的普遍规律”来解释所观察到的生命有机体的形式。这种观点后来与拉马克主义联系在一起,并一直声名狼藉,直到20世纪早期,达西・汤普森(1860-1948)试图复兴它。


The psychiatrist and engineer W. Ross Ashby introduced the term "self-organizing" to contemporary science in 1947.[7] It was taken up by the cyberneticians Heinz von Foerster, Gordon Pask, Stafford Beer; and von Foerster organized a conference on "The Principles of Self-Organization" at the University of Illinois' Allerton Park in June, 1960 which led to a series of conferences on Self-Organizing Systems.[23] Norbert Wiener took up the idea in the second edition of his Cybernetics: or Control and Communication in the Animal and the Machine (1961).

精神病学家、工程师 w · 罗斯 · 阿什比(W.Ross Ashby)在1947年将“自组织”一词引入当代科学。诺伯特 · 维纳在他的《控制论: 动物与机器中的控制与交流》(1961)的第二版中提出了这个想法。


Self-organization was associated模板:By whom with general systems theory in the 1960s, but did not become commonplace in the scientific literature until physicists Hermann Haken et al. and complex systems researchers adopted it in a greater picture from cosmology Erich Jantsch,模板:Clarify chemistry with dissipative system, biology and sociology as autopoiesis to system thinking in the following 1980s (Santa Fe Institute) and 1990s (complex adaptive system), until our days with the disruptive emerging technologies profounded by a rhizomatic network theory.[24]

/ 参考


Around 2008-2009, a concept of guided self-organization started to take shape. This approach aims to regulate self-organization for specific purposes, so that a dynamical system may reach specific attractors or outcomes. The regulation constrains a self-organizing process within a complex system by restricting local interactions between the system components, rather than following an explicit control mechanism or a global design blueprint. The desired outcomes, such as increases in the resultant internal structure and/or functionality, are achieved by combining task-independent global objectives with task-dependent constraints on local interactions[25][26].

大约在2008-2009年,导游自我组织的概念开始形成。这种方法的目的是为了特定的目的来规范自我组织,以便动力系统可以达到特定的吸引力或结果。规则通过限制系统组件之间的局部相互作用,而不是遵循明确的控制机制或全局设计蓝图,约束了复杂系统中的自组织过程。通过将与任务无关的全球目标与依赖任务的地方互动限制相结合,实现预期成果,例如增加由此产生的内部结构和 / 或功能。


By field

按字段排列

Convection cells in a gravity field

[重力场中的对流细胞]


Physics

物理学

The many self-organizing phenomena in physics include phase transitions and spontaneous symmetry breaking such as spontaneous magnetization and crystal growth in classical physics, and the laser,[27] superconductivity and Bose–Einstein condensation in quantum physics. It is found in self-organized criticality in dynamical systems, in tribology, in spin foam systems, and in loop quantum gravity,[28] river basins and deltas, in dendritic solidification (snow flakes), and in turbulent structure.[3][4]

物理学中的许多自组织现象包括相变和自发对称性破缺,如经典物理学中的自发磁化和晶体生长,以及量子物理学中的激光、超导现象和玻色-爱因斯坦凝聚。在自组织临界性的动力系统、摩擦学、自旋泡沫系统、回圈量子重力、河流流域和三角洲、树枝状凝固(雪花)和紊流结构中都发现了它。


Chemistry

化学

The DNA structure shown schematically at left self-assembles into the structure at right.[29]

左侧的 DNA 结构大致上与右侧的结构自组合在一起。


Self-organization in chemistry includes molecular self-assembly,[30] reaction–diffusion systems and oscillating reactions,[31] autocatalytic networks, liquid crystals,[32] grid complexes, colloidal crystals, self-assembled monolayers,[33][34] micelles, microphase separation of block copolymers, and Langmuir–Blodgett films.[35]

化学自我组织包括分子自组装、反应扩散体系和振荡反应、自催化网络、液晶、网格复合物、胶体晶体、自组装单分子膜、胶束、嵌段共聚物的微相分离和 Langmuir-Blodgett 薄膜。


模板:Anchor


Biology

生物学

Birds flocking, an example of self-organization in biology

[生物学自我组织的一个例子] 模板:See


Self-organization in biology[36] can be observed in spontaneous folding of proteins and other biomacromolecules, formation of lipid bilayer membranes, pattern formation and morphogenesis in developmental biology, the coordination of human movement, social behaviour in insects (bees, ants, termites)[37] and mammals, and flocking behaviour in birds and fish.[38]

生物学中的自我组织可以从蛋白质和其他生物大分子的自发折叠、脂质双层膜的形成、发育生物学的图案形成和形态发生、人类运动的协调、昆虫(蜜蜂、蚂蚁、白蚁)和哺乳动物的社会行为,以及鸟类和鱼类的群居行为中观察到。


The mathematical biologist Stuart Kauffman and other structuralists have suggested that self-organization may play roles alongside natural selection in three areas of evolutionary biology, namely population dynamics, molecular evolution, and morphogenesis. However, this does not take into account the essential role of energy in driving biochemical reactions in cells. The systems of reactions in any cell are self-catalyzing but not simply self-organizing as they are thermodynamically open systems relying on a continuous input of energy.[39][40] Self-organization is not an alternative to natural selection, but it constrains what evolution can do and provides mechanisms such as the self-assembly of membranes which evolution then exploits.[41]

数学生物学家 Stuart Kauffman 和其他结构主义者认为自我组织可能在进化生物学的3个领域,即族群动态、分子进化和形态建成中与自然选择一起发挥作用。然而,这并没有考虑到能量在驱动细胞生化反应中的重要作用。任何细胞中的反应系统都是自催化的,而不是简单的自组织的,因为它们是依靠连续输入能量的热力学开放系统。自我组织并不是自然选择的替代品,但它限制了进化的能力,并提供了一些机制,比如进化利用的膜的自我组装。


Computer science

计算机科学


Phenomena from mathematics and computer science such as cellular automata, random graphs, and some instances of evolutionary computation and artificial life exhibit features of self-organization. In swarm robotics, self-organization is used to produce emergent behavior. In particular the theory of random graphs has been used as a justification for self-organization as a general principle of complex systems. In the field of multi-agent systems, understanding how to engineer systems that are capable of presenting self-organized behavior is an active research area.[42] Optimization algorithms can be considered self-organizing because they aim to find the optimal solution to a problem. If the solution is considered as a state of the iterative system, the optimal solution is the selected, converged structure of the system.[43][44] Self-organizing networks include small-world networks[45] and scale-free networks. These emerge from bottom-up interactions, unlike top-down hierarchical networks within organizations, which are not self-organizing.[46] Cloud computing systems have been argued to be inherently self-organising,[47] but while they have some autonomy, they are not self-managing as they do not have the goal of reducing their own complexity.[48][49]

来自数学和计算机科学的现象,如细胞自动机,随机图形,以及一些进化计算和人工生命的实例,展示了自我组织的特征。在群机器人技术中,自我组织被用来产生紧急行为。特别是随机图理论已经被用来证明自我组织是复杂系统的一般原理。在多智能体系统领域,理解如何设计能够呈现自组织行为的系统是一个活跃的研究领域。优化算法可以被认为是自组织的,因为它们的目标是找到问题的最优解。如果将解看作迭代系统的一种状态,那么最优解就是系统的选择收敛结构。自组织网络包括小世界网络和无标度网络。这些来自于自下而上的交互,不像组织内部的自上而下的等级网络,它们不是自组织的。人们一直认为云计算系统本质上是自组织的,但尽管它们有一定的自主性,但它们不是自我管理的,因为它们没有降低自身复杂性的目标。


Cybernetics

控制论


Norbert Wiener regarded the automatic serial identification of a black box and its subsequent reproduction as self-organization in cybernetics.[50] The importance of phase locking or the "attraction of frequencies", as he called it, is discussed in the 2nd edition of his Cybernetics: Or Control and Communication in the Animal and the Machine.[51] K. Eric Drexler sees self-replication as a key step in nano and universal assembly. By contrast, the four concurrently connected galvanometers of W. Ross Ashby's Homeostat hunt, when perturbed, to converge on one of many possible stable states.[52] Ashby used his state counting measure of variety[53] to describe stable states and produced the "Good Regulator"[54] theorem which requires internal models for self-organized endurance and stability (e.g. Nyquist stability criterion). Warren McCulloch proposed "Redundancy of Potential Command"[55] as characteristic of the organization of the brain and human nervous system and the necessary condition for self-organization. Heinz von Foerster proposed Redundancy, R=1 − H/Hmax, where H is entropy.[56][57] In essence this states that unused potential communication bandwidth is a measure of self-organization.

诺伯特 · 维纳认为黑匣子的自动序列识别及其随后的再现是控制论中的自我组织。相位锁定的重要性,或者如他所说的“频率的吸引力” ,在他的第二版《控制论: 动物与机器中的控制与交流》中被讨论了! -- 是的,但是我们为什么在这里提到它。认为自我复制是纳米和通用组装的关键一步。相比之下,w · 罗斯 · 阿什比的同时连接的四个电流计在受到扰动时收敛于许多可能的稳定状态之一。阿什比用他的多样性状态计数测度来描述稳定状态,并产生了“好的调节器”定理,该定理需要内部模型来自组织的耐久性和稳定性(例如:。奈奎斯特稳定判据)。提出了“潜在指挥冗余” ,作为大脑和人类神经系统组织的特征,也是自我组织的必要条件。Heinz von Foerster 提出了冗余度,r1-h / hsub max / sub,其中 h 是熵。从本质上来说,这表明未使用的潜在通信带宽是自我组织的度量。


In the 1970s Stafford Beer considered self-organization necessary for autonomy in persisting and living systems. He applied his viable system model to management. It consists of five parts: the monitoring of performance of the survival processes (1), their management by recursive application of regulation (2), homeostatic operational control (3) and development (4) which produce maintenance of identity (5) under environmental perturbation. Focus is prioritized by an alerting "algedonic loop" feedback: a sensitivity to both pain and pleasure produced from under-performance or over-performance relative to a standard capability.[58]

在20世纪70年代,斯塔福德 · 比尔认为自我组织对于持续存在的生命系统的自治是必要的。他将自己可行的系统模型应用于管理。它包括五个部分: 生存过程的性能监测(1)、递归应用调控(2)对生存过程的管理(3)和在环境扰动下产生身份维持(5)的发展(4)。注意力由警觉的“代数循环”反馈确定优先级: 相对于标准能力而言,对表现不佳或过度表现所产生的痛苦和快乐的敏感性。


In the 1990s Gordon Pask argued that von Foerster's H and Hmax were not independent, but interacted via countably infinite recursive concurrent spin processes[59] which he called concepts. His strict definition of concept "a procedure to bring about a relation"[60] permitted his theorem "Like concepts repel, unlike concepts attract"[61] to state a general spin-based principle of self-organization. His edict, an exclusion principle, "There are No Doppelgangers" means no two concepts can be the same. After sufficient time, all concepts attract and coalesce as pink noise. The theory applies to all organizationally closed or homeostatic processes that produce enduring and coherent products which evolve, learn and adapt.[62][59]

在20世纪90年代,Gordon Pask 认为 von Foerster 的 h 和 Hmax 不是独立的,而是通过可数无限递归并发自旋过程相互作用,从而陈述了一个普遍的自旋为基础的自我组织原理。他的法令,一个排除原则,“没有二重身”意味着没有两个概念可以是相同的。在足够的时间之后,所有的概念都被吸引并合并为粉红噪声。这个理论适用于所有组织上封闭或内部平衡的过程,产生持久和连贯的产品,进化,学习和适应。 <! ——帕斯克的演员相互作用“硬壳”模型反映在一些涌现性和连贯性的观点中。它需要一个节点出现拓扑,在与具有棱体张拉整体结构的单元相互作用过程中产生辐射。劳克林对于崛起的贡献反映了这些限制


Human society

人类社会

Social self-organization in international drug routes

国际贩毒路线中的社会自我组织


The self-organizing behaviour of social animals and the self-organization of simple mathematical structures both suggest that self-organization should be expected in human society. Tell-tale signs of self-organization are usually statistical properties shared with self-organizing physical systems. Examples such as critical mass, herd behaviour, groupthink and others, abound in sociology, economics, behavioral finance and anthropology.[63]

社会性动物的自组织行为和简单数学结构的自我组织都表明人类社会应该有自我组织。自我组织的显著特征通常是与自组织物理系统共有的统计特性。社会学、经济学、行为金融学和人类学中充斥着诸如临界质量、群体行为、群体思维等等的例子。


In social theory, the concept of self-referentiality has been introduced as a sociological application of self-organization theory by Niklas Luhmann (1984). For Luhmann the elements of a social system are self-producing communications, i.e. a communication produces further communications and hence a social system can reproduce itself as long as there is dynamic communication. For Luhmann human beings are sensors in the environment of the system. Luhmann developed an evolutionary theory of Society and its subsystems, using functional analyses and systems theory.[64]

在社会理论中,自我指涉的概念被 Niklas Luhmann (1984)作为自我组织理论的社会学应用而引入。对于卢曼来说,社会系统的要素是自我产生的通信,即。交流产生进一步的交流,因此只要有动态的交流,社会系统就能够再现自己。对于卢曼来说,人是系统环境中的传感器。卢曼利用功能分析和系统理论发展了社会及其子系统的进化理论。


In economics, a market economy is sometimes said to be self-organizing. Paul Krugman has written on the role that market self-organization plays in the business cycle in his book "The Self Organizing Economy".[65] Friedrich Hayek coined the term catallaxy[66] to describe a "self-organizing system of voluntary co-operation", in regards to the spontaneous order of the free market economy. Neo-classical economists hold that imposing central planning usually makes the self-organized economic system less efficient. On the other end of the spectrum, economists consider that market failures are so significant that self-organization produces bad results and that the state should direct production and pricing. Most economists adopt an intermediate position and recommend a mixture of market economy and command economy characteristics (sometimes called a mixed economy). When applied to economics, the concept of self-organization can quickly become ideologically imbued.[67][68]

在经济学中,市场经济有时被认为是自我组织的。在他的《自组织经济》一书中写到了市场自我组织在商业周期中扮演的角色。弗里德里希•哈耶克(Friedrich Hayek)就自由市场经济的自发秩序创造了“自我组织的自愿合作系统”(catallaxy)一词。新古典主义经济学家认为,实行中央计划经济通常会降低自组织经济体系的效率。另一方面,经济学家认为市场失灵是如此严重,以至于自我组织产生了糟糕的结果,政府应该指导生产和定价。大多数经济学家采取中间立场,推荐市场经济和指令经济的混合特征(有时称为混合经济)。当应用于经济学时,自我组织的概念可以很快地渗透到意识形态中。


In learning

在学习中 Enabling others to "learn how to learn"[69] is often taken to mean instructing them[70] how to submit to being taught. Self-organised learning (S.O.L.)[71][72][73] denies that "the expert knows best" or that there is ever "the one best method",[74][75][76] insisting instead on "the construction of personally significant, relevant and viable meaning"[77] to be tested experientially by the learner.[78] This may be collaborative, and more rewarding personally.[79][80] It is seen as a lifelong process, not limited to specific learning environments (home, school, university) or under the control of authorities such as parents and professors.[81] It needs to be tested, and intermittently revised, through the personal experience of the learner.[82] It need not be restricted by either consciousness or language.[83] Fritjof Capra argued that it is poorly recognised within psychology and education.[84] It may be related to cybernetics as it involves a negative feedback control loop,[60] or to systems theory.[85] It can be conducted as a learning conversation or dialogue between learners or within one person.[86][87]

让别人“学会如何学习”通常被理解为指导他们如何接受别人的教导。自我组织学习(s.o.l.)否认“专家知道的最多”或者曾经有“最好的方法” ,而是坚持“建立个人重要的、相关的和可行的意义” ,由学习者进行经验测试。这可能是合作的,而且对个人来说更有价值。它被视为一个终身的过程,不仅限于特定的学习环境(家庭、学校、大学) ,也不受父母和教授等权威的控制。它需要通过学习者的个人经验进行测试和间歇性修改。它不需要被意识或语言所限制。弗里特约夫 · 卡普拉认为,心理学和教育界对此认识不足。它可能与控制论有关,因为它涉及一个负反馈控制回路,或者与系统理论有关。它可以通过学习者之间或者一个人内部的学习对话进行。


Traffic flow

交通流量


The self-organizing behavior of drivers in traffic flow determines almost all the spatiotemporal behavior of traffic, such as traffic breakdown at a highway bottleneck, highway capacity, and the emergence of moving traffic jams. In 1996–2002 these complex self-organizing effects were explained by Boris Kerner's three-phase traffic theory.[88]

交通流中驾驶员的自组织行为决定了几乎所有的交通时空行为,如高速公路瓶颈处的交通崩溃、高速公路通行能力以及移动交通拥堵的出现。在1996-2002年,这些复杂的自组织效应被 Boris Kerner 的三相交通理论理论所解释。


In linguistics

在语言学上


Order appears spontaneously in the evolution of language as individual and population behaviour interacts with biological evolution.[89]

个体和种群行为与生物进化相互作用时,语言进化中自发地出现了秩序。


In research funding

在研究经费方面 Self-organized funding allocation (SOFA) is a method of distributing funding for scientific research. In this system, each researcher is allocated an equal amount of funding, and is required to anonymously allocate a fraction of their funds to the research of others. Proponents of SOFA argue that it would result in similar distribution of funding as the present grant system, but with less overhead.[90] In 2016, a test pilot of SOFA began in the Netherlands.[91]

自组织科研经费分配是科研经费分配的一种方式。在这个系统中,每个研究人员被分配相同数量的资金,并被要求匿名分配他们资金的一部分给其他人的研究。《部队地位协定》的支持者认为,这将导致与目前赠款制度相似的资金分配,但管理费用较少。2016年,在荷兰开始了 SOFA 的试飞。


Criticism

批评 Heinz Pagels, in a 1985 review of Ilya Prigogine and Isabelle Stengers's book Order Out of Chaos in Physics Today, appeals to authority:[92]

海因茨 · 帕格尔斯,在1985年对伊利亚 · 普里戈金和伊莎贝尔 · 斯特恩的《今日物理学中的混沌秩序》一书的评论中,呼吁权威:


/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


Of course, Blumenfeld does not answer the further question of how those program-like structures emerge in the first place. His explanation leads directly to infinite regress.

当然,Blumenfeld 并没有回答进一步的问题,即这些类似程序的结构最初是如何出现的。他的解释直接指向了无穷回归。


/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


In theology, Thomas Aquinas (1225–1274) in his Summa Theologica assumes a teleological created universe in rejecting the idea that something can be a self-sufficient cause of its own organization:[93]

在神学方面,Thomas Aquinas (1225-1274)在他的《神学大全假设了一个目的论创造的宇宙,拒绝接受这样一种观点,即某些事物可以是自给自足的事业,其自身的组织:


/* Styling for Template:Quote */ .templatequote { overflow: hidden; margin: 1em 0; padding: 0 40px; } .templatequote .templatequotecite {

   line-height: 1.5em;
   /* @noflip */
   text-align: left;
   /* @noflip */
   padding-left: 1.6em;
   margin-top: 0;

}


See also

参见


Notes

注释 模板:Notelist


References

参考资料

  1. Betzler, S. B.; Wisnet, A.; Breitbach, B.; Mitterbauer, C.; Weickert, J.; Schmidt-Mende, L.; Scheu, C. (2014). "Template-free synthesis of novel, highly-ordered 3D hierarchical Nb3O7(OH) superstructures with semiconductive and photoactive properties" (PDF). Journal of Materials Chemistry A. 2 (30): 12005. doi:10.1039/C4TA02202E.
  2. Glansdorff, P., Prigogine, I. (1971). Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley-Interscience, London.
  3. 3.0 3.1 Compare: Camazine, Scott (2003). Self-organization in Biological Systems. Princeton studies in complexity (reprint ed.). Princeton University Press. ISBN 9780691116242. https://books.google.com/books?id=zMgyNN6Ufj0C. 
  4. 4.0 4.1 Ilachinski, Andrew (2001). Cellular Automata: A Discrete Universe. World Scientific. p. 247. ISBN 9789812381835. https://books.google.com/books?id=3Hx2lx_pEF8C. "We have already seen ample evidence for what is arguably the single most impressive general property of CA, namely their capacity for self-organization" 
  5. Feltz, Bernard (2006). Self-organization and Emergence in Life Sciences. p. 1. ISBN 978-1-402-03916-4. 
  6. Bonabeau, Eric; Dorigo, Marco; Theraulaz, Guy (1999). Swarm intelligence: from natural to artificial systems. OUP USA. pp. 9–11. ISBN 978-0-19-513159-8. https://books.google.com/books?id=PvTDhzqMr7cC. 
  7. 7.0 7.1 7.2 Ashby, W. R. (1947). "Principles of the Self-Organizing Dynamic System". The Journal of General Psychology. 37 (2): 125–28. doi:10.1080/00221309.1947.9918144. PMID 20270223.
  8. Ashby, W. R. (1962). "Principles of the self-organizing system", pp. 255–78 in Principles of Self-Organization. Heinz von Foerster and George W. Zopf, Jr. (eds.) U.S. Office of Naval Research.
  9. Von Foerster, H. (1960). "On self-organizing systems and their environments", pp. 31–50 in Self-organizing systems. M.C. Yovits and S. Cameron (eds.), Pergamon Press, London
  10. See occurrences on Google Books.
  11. François, Charles, ed. (2011) [1997]. International Encyclopedia of Systems and Cybernetics (2nd ed.). Berlin: Walter de Gruyter. p. 107. ISBN 978-3-1109-6801-9. 
  12. See occurrences on Google Books.
  13. [1].
  14. [2].
  15. Nicolis, G. and Prigogine, I. (1977). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. Wiley, New York.
  16. Prigogine, I. and Stengers, I. (1984). Order out of chaos: Man's new dialogue with nature. Bantam Books.
  17. Ahmed, Furqan; Tirkkonen, Olav (January 2016). "Simulated annealing variants for self-organized resource allocation in small cell networks". Applied Soft Computing. 38: 762–70. doi:10.1016/j.asoc.2015.10.028.
  18. Palmer, Ada (October 2014). Reading Lucretius in the Renaissance. Harvard University Press. ISBN 978-0-674-72557-7. http://www.hup.harvard.edu/catalog.php?isbn=9780674725577. "Ada Palmer explores how Renaissance readers, such as Machiavelli, Pomponio Leto, and Montaigne, actually ingested and disseminated Lucretius, ... and shows how ideas of emergent order and natural selection, so critical to our current thinking, became embedded in Europe’s intellectual landscape before the seventeenth century." 
  19. German Aesthetic. CUP Archive. pp. 64–. GGKEY:TFTHBB91ZH2. https://books.google.com/books?id=eC88AAAAIAAJ&pg=PA64. 
  20. Carnot, S. (1824/1986). Reflections on the motive power of fire, Manchester University Press, Manchester UK,
  21. Clausius, R. (1850). "Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten Lassen". Annalen der Physik. 79 (4): 368–97, 500–24. Bibcode:1850AnP...155..500C. doi:10.1002/andp.18501550403. hdl:2027/uc1.$b242250. Translated into English: Clausius, R. (July 1851). "On the Moving Force of Heat, and the Laws regarding the Nature of Heat itself which are deducible therefrom". London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4th. 2 (VIII): 1–21, 102–19. doi:10.1080/14786445108646819. Retrieved 26 June 2012.
  22. Ruse, Michael (2013). "17. From Organicism to Mechanism-and Halfway Back?". In Henning, Brian G.; Scarfe, Adam. Beyond Mechanism: Putting Life Back Into Biology. Lexington Books. p. 419. ISBN 9780739174371. https://books.google.com/books?id=3VtosxAtq-EC. 
  23. Asaro, P. (2007). "Heinz von Foerster and the Bio-Computing Movements of the 1960s" in Albert Müller and Karl H. Müller (eds.) An Unfinished Revolution? Heinz von Foerster and the Biological Computer Laboratory BCL 1958–1976. Vienna, Austria: Edition Echoraum.
  24. 自我组织理论在20世纪60年代与一般系统理论联系在一起,但直到物理学家 Hermann Haken 等人的研究成果出现后才在科学文献中得到普及。而复杂系统的研究人员在更大的范围内采用了它,从宇宙学、 Dissipative system 化学、生物学和社会学的自创生到20世纪80年代(圣菲研究所)和90年代(复杂适应性系统)的系统思维,直到我们的时代,破坏性新兴技术被根状网络理论所丰富。 裁判 As an indication of the increasing importance of this concept, when queried with the keyword self-organ*, Dissertation Abstracts finds nothing before 1954, and only four entries before 1970. There were 17 in the years 1971–1980; 126 in 1981–1990; and 593 in 1991–2000. 《论文摘要》在1954年以前没有发现任何词条,在1970年以前只有四个词条。1971-1980年期间有17个,1981-1990年期间有126个,1991-2000年期间有593个。
  25. Phys.org, Self-organizing robots: Robotic construction crew needs no foreman (w/ video), February 13, 2014.
  26. Science Daily, Robotic systems: How sensorimotor intelligence may develop... self-organized behaviors , October 27, 2015.
  27. Zeiger, H. J. and Kelley, P. L. (1991) "Lasers", pp. 614–19 in The Encyclopedia of Physics, Second Edition, edited by Lerner, R. and Trigg, G., VCH Publishers.
  28. Ansari M. H. (2004) Self-organized theory in quantum gravity. arxiv.org
  29. Strong, M. (2004). "Protein Nanomachines". PLOS Biology. 2 (3): e73–e74. doi:10.1371/journal.pbio.0020073. PMC 368168. PMID 15024422.
  30. Lehn, J.-M. (1988). "Perspectives in Supramolecular Chemistry-From Molecular Recognition towards Molecular Information Processing and Self-Organization". Angew. Chem. Int. Ed. Engl. 27 (11): 89–121. doi:10.1002/anie.198800891.
  31. Bray, William C. (1921). "A periodic reaction in homogeneous solution and its relation to catalysis". Journal of the American Chemical Society. 43 (6): 1262–67. doi:10.1021/ja01439a007.
  32. Rego, J.A.; Harvey, Jamie A.A.; MacKinnon, Andrew L.; Gatdula, Elysse (January 2010). "Asymmetric synthesis of a highly soluble 'trimeric' analogue of the chiral nematic liquid crystal twist agent Merck S1011" (PDF). Liquid Crystals. 37 (1): 37–43. doi:10.1080/02678290903359291. Archived from the original (PDF) on 2010-04-13.
  33. Love; Estroff, Lara A.; Kriebel, Jennah K.; Nuzzo, Ralph G.; Whitesides, George M. (2005). "Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology". Chem. Rev. 105 (4): 1103–70. doi:10.1021/cr0300789. PMID 15826011. {{cite journal}}: Unknown parameter |displayauthors= ignored (help)
  34. Barlow, S.M.; Raval R.. (2003). "Complex organic molecules at metal surfaces: bonding, organisation and chirality". Surface Science Report. 50 (6–8): 201–341. Bibcode:2003SurSR..50..201B. doi:10.1016/S0167-5729(03)00015-3.
  35. Ritu, Harneet (2016). "Large Area Fabrication of Semiconducting Phosphorene by Langmuir-Blodgett Assembly". Sci. Rep. 6: 34095. arXiv:1605.00875. Bibcode:2016NatSR...634095K. doi:10.1038/srep34095. PMC 5037434. PMID 27671093.
  36. Camazine, Deneubourg, Franks, Sneyd, Theraulaz, Bonabeau, Self-Organization in Biological Systems, Princeton University Press, 2003.
  37. Bonabeau, Eric; et al. (May 1997). "Self-organization in social insects" (PDF). Trends in Ecology & Evolution. 12 (5): 188–93. doi:10.1016/S0169-5347(97)01048-3. PMID 21238030.
  38. Couzin, Iain D.; Krause, Jens (2003). "Self-Organization and Collective Behavior in Vertebrates" (PDF). Advances in the Study of Behavior. 32: 1–75. doi:10.1016/S0065-3454(03)01001-5. ISBN 9780120045327. Archived from the original (PDF) on 2016-12-20.
  39. Fox, Ronald F. (December 1993). "Review of Stuart Kauffman, The Origins of Order: Self-Organization and Selection in Evolution". Biophys. J. 65 (6): 2698–99. Bibcode:1993BpJ....65.2698F. doi:10.1016/s0006-3495(93)81321-3. PMC 1226010.
  40. Goodwin, Brian (2009). Beyond the Darwinian Paradigm: Understanding Biological Forms. Harvard University Press. 
  41. Johnson, Brian R.; Lam, Sheung Kwam (2010). "Self-organization, Natural Selection, and Evolution: Cellular Hardware and Genetic Software". BioScience. 60 (11): 879–85. doi:10.1525/bio.2010.60.11.4.
  42. Serugendo, Giovanna Di Marzo; et al. (June 2005). "Self-organization in multi-agent systems". Knowledge Engineering Review. 20 (2): 165–89. doi:10.1017/S0269888905000494.
  43. Yang, X. S.; Deb, S.; Loomes, M.; Karamanoglu, M. (2013). "A framework for self-tuning optimization algorithm". Neural Computing and Applications. 23 (7–8): 2051–57. arXiv:1312.5667. Bibcode:2013arXiv1312.5667Y. doi:10.1007/s00521-013-1498-4.
  44. X. S. Yang (2014) Nature-Inspired Optimization Algorithms, Elsevier.
  45. Watts, Duncan J.; Strogatz, Steven H. (June 1998). "Collective dynamics of 'small-world' networks". Nature. 393 (6684): 440–42. Bibcode:1998Natur.393..440W. doi:10.1038/30918. PMID 9623998.
  46. Clauset, Aaron; Cosma Rohilla Shalizi; M. E. J Newman (2009). "Power-law distributions in empirical data". SIAM Review. 51 (4): 661–703. arXiv:0706.1062. Bibcode:2009SIAMR..51..661C. doi:10.1137/070710111.
  47. Zhang, Q., Cheng, L., and Boutaba, R. (2010). "Cloud computing: state-of-the-art and research challenges". Journal of Internet Services and Applications. 1 (1): 7–18. doi:10.1007/s13174-010-0007-6.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  48. Marinescu, D. C.; Paya, A.; Morrison, J. P.; Healy, P. (2013). "An auction-driven self-organising cloud delivery model". arXiv:1312.2998 [cs.DC].
  49. Lynn; et al. (2016). "Cloudlightning: A Framework for a Self-organising and Self-managing Heterogeneous Cloud". Proceedings of the 6th International Conference on Cloud Computing and Services Science: 333. doi:10.5220/0005921503330338. ISBN 978-989-758-182-3.
  50. Wiener, Norbert (1962) "The mathematics of self-organising systems". Recent developments in information and decision processes, Macmillan, N. Y. and Chapter X in Cybernetics, or control and communication in the animal and the machine, The MIT Press.
  51. Cybernetics, or control and communication in the animal and the machine, The MIT Press, Cambridge, Massachusetts and Wiley, NY, 1948. 2nd Edition 1962 "Chapter X "Brain Waves and Self-Organizing Systems" pp. 201–02.
  52. Ashby, William Ross (1952) Design for a Brain, Chapter 5 Chapman & Hall
  53. Ashby, William Ross (1956) An Introduction to Cybernetics, Part Two Chapman & Hall
  54. Conant, R. C.; Ashby, W. R. (1970). "Every good regulator of a system must be a model of that system" (PDF). Int. J. Systems Sci. 1 (2): 89–97. doi:10.1080/00207727008920220.
  55. Embodiments of Mind MIT Press (1965)"
  56. von Foerster, Heinz; Pask, Gordon (1961). "A Predictive Model for Self-Organizing Systems, Part I". Cybernetica. 3: 258–300.
  57. von Foerster, Heinz; Pask, Gordon (1961). "A Predictive Model for Self-Organizing Systems, Part II". Cybernetica. 4: 20–55.
  58. "Brain of the Firm" Alan Lane (1972); see also Viable System Model in "Beyond Dispute", and Stafford Beer (1994) "Redundancy of Potential Command" pp. 157–58.
  59. 59.0 59.1 Pask, Gordon (1996). "Heinz von Foerster's Self-Organisation, the Progenitor of Conversation and Interaction Theories" (PDF). Systems Research. 13 (3): 349–62. doi:10.1002/(sici)1099-1735(199609)13:3<349::aid-sres103>3.3.co;2-7.
  60. 60.0 60.1 Pask, G. (1973). Conversation, Cognition and Learning. A Cybernetic Theory and Methodology. Elsevier
  61. Green, N. (2001). "On Gordon Pask". Kybernetes. 30 (5/6): 673–82. doi:10.1108/03684920110391913.
  62. Pask, Gordon (1993) Interactions of Actors (IA), Theory and Some Applications.
  63. Interactive models for self organization and biological systems Center for Models of Life, Niels Bohr Institute, Denmark
  64. Luhmann, Niklas (1995) Social Systems. Stanford, California: Stanford University Press.
  65. Krugman, P. (1995) The Self Organizing Economy. Blackwell Publishers.
  66. Hayek, F. (1976) Law, Legislation and Liberty, Volume 2: The Mirage of Social Justice. University of Chicago Press.
  67. Biel, R.; Mu-Jeong Kho (November 2009). "The Issue of Energy within a Dialectical Approach to the Regulationist Problematique" (PDF). Recherches & Régulation Working Papers, RR Série ID 2009-1. Association Recherche & Régulation: 1–21. Retrieved 2013-11-09.
  68. Marshall, A. (2002) The Unity of Nature, Chapter 5. Imperial College Press.
  69. Rogers.C. (1969). Freedom to Learn. Merrill
  70. Feynman, R. P. (1987) Elementary Particles and the Laws of Physics. The Dyrac 1997 Memorial Lecture. Cambridge University Press.
  71. Thomas L.F. & Augstein E.S. (1985) Self-Organised Learning: Foundations of a conversational science for psychology. Routledge (1st Ed.)
  72. Thomas L.F. & Augstein E.S. (1994) Self-Organised Learning: Foundations of a conversational science for psychology. Routledge (2nd Ed.)
  73. Thomas L.F. & Augstein E.S. (2013) Learning: Foundations of a conversational science for psychology. Routledge (Psy. Revivals)
  74. Harri-Augstein E. S. and Thomas L. F. (1991) Learning Conversations: The S-O-L way to personal and organizational growth. Routledge (1st Ed.)
  75. Harri-Augstein E. S. and Thomas L. F. (2013) Learning Conversations: The S-O-L way to personal and organizational growth. Routledge (2nd Ed.)
  76. Harri-Augstein E. S. and Thomas L. F. (2013)Learning Conversations: The S-O-L way to personal and organizational growth. BookBaby (eBook)
  77. Illich. I. (1971) A Celebration of Awareness. Penguin Books.
  78. Harri-Augstein E. S. (2000) The University of Learning in transformation
  79. Schumacher, E. F. (1997) This I Believe and Other Essays (Resurgence Book).
  80. Revans R. W. (1982) The Origins and Growth of Action Learning Chartwell-Bratt, Bromley
  81. Thomas L.F. and Harri-Augstein S. (1993) "On Becoming a Learning Organisation" in Report of a 7 year Action Research Project with the Royal Mail Business. CSHL Monograph
  82. Rogers C.R. (1971) On Becoming a Person. Constable, London
  83. Prigogyne I. & Sengers I. (1985) Order out of Chaos Flamingo Paperbacks. London
  84. Capra F (1989) Uncommon Wisdom Flamingo Paperbacks. London
  85. Bohm D. (1994) Thought as a System. Routledge.
  86. Maslow, A. H. (1964). Religions, values, and peak-experiences, Columbus: Ohio State University Press.
  87. Conversational Science Thomas L.F. and Harri-Augstein E.S. (1985)
  88. Kerner, Boris S. (1998). "Experimental Features of Self-Organization in Traffic Flow". Physical Review Letters. 81 (17): 3797–3800. Bibcode:1998PhRvL..81.3797K. doi:10.1103/physrevlett.81.3797.
  89. De Boer, Bart (2011). Gibson, Kathleen R.. ed. Self-organization and language evolution. Oxford. 
  90. Bollen, Johan (8 August 2018). "Who would you share your funding with?". Nature (in English). 560 (7717): 143. Bibcode:2018Natur.560..143B. doi:10.1038/d41586-018-05887-3. PMID 30089925.
  91. Coelho, Andre. "NETHERLANDS: A radical new way do fund science | BIEN". Retrieved 2 June 2019.
  92. Pagels, H. R. (January 1, 1985). "Is the irreversibility we see a fundamental property of nature?" (PDF). Physics Today. 38 (1): 97–99. Bibcode:1985PhT....38a..97P. doi:10.1063/1.2813716.
  93. Article 3. Whether God exists? newadvent.org


Further reading

进一步阅读

  • W. Ross Ashby (1966), Design for a Brain, Chapman & Hall, 2nd edition.
  • Amoroso, Richard (2005) The Fundamental Limit and Origin of Complexity in Biological Systems [3].
  • Stafford Beer, Self-organization as autonomy: Brain of the Firm 2nd edition Wiley 1981 and Beyond Dispute Wiley 1994.
  • Adrian Bejan (2000), Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK, 324 pp.
  • Mark Buchanan (2002), Nexus: Small Worlds and the Groundbreaking Theory of Networks W. W. Norton & Company.
  • Myrna Estep (2003), A Theory of Immediate Awareness: Self-Organization and Adaptation in Natural Intelligence, Kluwer Academic Publishers.
  • Myrna L. Estep (2006), Self-Organizing Natural Intelligence: Issues of Knowing, Meaning, and Complexity, Springer-Verlag.
  • J. Doyne Farmer et al. (editors) (1986), "Evolution, Games, and Learning: Models for Adaptation in Machines and Nature", in: Physica D, Vol 22.
  • Hermann Haken (1983) Synergetics: An Introduction. Nonequilibrium Phase Transition and Self-Organization in Physics, Chemistry, and Biology, Third Revised and Enlarged Edition, Springer-Verlag.
  • Arthur Iberall (2016), Homeokinetics: The Basics, Strong Voices Publishing, Medfield, Massachusetts.
  • Henrik Jeldtoft Jensen (1998), Self-Organized Criticality: Emergent Complex Behaviour in Physical and Biological Systems, Cambridge Lecture Notes in Physics 10, Cambridge University Press.
  • Stuart Kauffman (1993), Origins of Order: Self-Organization and Selection in Evolution Oxford University Press.
  • J. A. Scott Kelso (1995), Dynamic Patterns: The self-organization of brain and behavior, The MIT Press, Cambridge, Massachusetts.
  • J. A. Scott Kelso & David A Engstrom (2006), "The Complementary Nature", The MIT Press, Cambridge, Massachusetts.
  • E.V. Krishnamurthy (2009)", Multiset of Agents in a Network for Simulation of Complex Systems", in "Recent advances in Nonlinear Dynamics and synchronization, (NDS-1) – Theory and applications, Springer Verlag, New York,2009. Eds. K.Kyamakya et al.
  • Paul Krugman (1996), The Self-Organizing Economy, Cambridge, Massachusetts, and Oxford: Blackwell Publishers.
  • Elizabeth McMillan (2004) "Complexity, Organizations and Change".
  • Marshall, A (2002) The Unity of Nature, Imperial College Press: London (esp. chapter 5)
  • Müller, J.-A., Lemke, F. (2000), Self-Organizing Data Mining.
  • Gregoire Nicolis and Ilya Prigogine (1977) Self-Organization in Non-Equilibrium Systems, Wiley.
  • Heinz Pagels (1988), The Dreams of Reason: The Computer and the Rise of the Sciences of Complexity, Simon & Schuster.
  • Gordon Pask (1961), The cybernetics of evolutionary processes and of self organizing systems, 3rd. International Congress on Cybernetics, Namur, Association Internationale de Cybernetique.
  • Christian Prehofer ea. (2005), "Self-Organization in Communication Networks: Principles and Design Paradigms", in: IEEE Communications Magazine, July 2005.
  • Mitchell Resnick (1994), Turtles, Termites and Traffic Jams: Explorations in Massively Parallel Microworlds, Complex Adaptive Systems series, MIT Press.
  • Ricard V. Solé and Brian C. Goodwin (2001), Signs of Life: How Complexity Pervades Biology], Basic Books.
  • Steven Strogatz (2004), Sync: The Emerging Science of Spontaneous Order, Theia.
  • D'Arcy Thompson (1917), On Growth and Form, Cambridge University Press, 1992 Dover Publications edition.
  • Tom De Wolf, Tom Holvoet (2005), Emergence Versus Self-Organisation: Different Concepts but Promising When Combined, In Engineering Self Organising Systems: Methodologies and Applications, Lecture Notes in Computer Science, volume 3464, pp. 1–15.
  • K. Yee (2003), "Ownership and Trade from Evolutionary Games", International Review of Law and Economics, 23.2, 183–197.
  • Louise B. Young (2002), The Unfinished Universe


External links

外部链接


模板:Patterns in nature

类别: 控制论

类别: 扩展进化综合

范畴: 系统论

分类: 物理概念


This page was moved from wikipedia:en:Self-organization. Its edit history can be viewed at 自组织理论/edithistory