This motif occurs in the case that several regulators combinatorially control a set of genes with diverse regulatory combinations. This motif was found in ''[[Escherichia coli|E. coli]]'' in various systems such as carbon utilization, anaerobic growth, stress response and others.<ref name="she1"/><ref name="boy1"/> In order to better understand the function of this motif one has to obtain more information about the way the multiple inputs are integrated by the genes. Kaplan ''et al.''<ref name="kap2">{{cite journal |vauthors=Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U |title=Diverse two-dimensional input functions control bacterial sugar genes |journal=Mol. Cell |volume=29 |issue=6 |pages=786–92 |date=March 2008 |pmid=18374652 |pmc=2366073 |doi=10.1016/j.molcel.2008.01.021 }}</ref> has mapped the input functions of the sugar utilization genes in ''[[Escherichia coli|E. coli]]'', showing diverse shapes. | This motif occurs in the case that several regulators combinatorially control a set of genes with diverse regulatory combinations. This motif was found in ''[[Escherichia coli|E. coli]]'' in various systems such as carbon utilization, anaerobic growth, stress response and others.<ref name="she1"/><ref name="boy1"/> In order to better understand the function of this motif one has to obtain more information about the way the multiple inputs are integrated by the genes. Kaplan ''et al.''<ref name="kap2">{{cite journal |vauthors=Kaplan S, Bren A, Zaslaver A, Dekel E, Alon U |title=Diverse two-dimensional input functions control bacterial sugar genes |journal=Mol. Cell |volume=29 |issue=6 |pages=786–92 |date=March 2008 |pmid=18374652 |pmc=2366073 |doi=10.1016/j.molcel.2008.01.021 }}</ref> has mapped the input functions of the sugar utilization genes in ''[[Escherichia coli|E. coli]]'', showing diverse shapes. |