“自组织临界控制”的版本间的差异

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索
(没有差异)

2020年5月7日 (四) 12:13的版本

此词条暂由彩云小译翻译,未经人工整理和审校,带来阅读不便,请见谅。In applied physics, the concept of controlling self-organized criticality refers to the control of processes by which a self-organized system dissipates energy. The objective of the control is to reduce the probability of occurrence of and size of energy dissipation bursts, often called avalanches, of self-organized systems. Dissipation of energy in a self-organized critical system into a lower energy state can be costly for society, since it depends on avalanches of all sizes usually following a kind of power law distribution and large avalanches can be damaging and disruptive.引用错误:没有找到与</ref>对应的<ref>标签[1][1][2][2]

|arxiv = 1305.6668 |bibcode = 2010PhRvE..82c1108C }}</ref>

|arxiv = 1305.6668 |bibcode = 2010PhRvE..82c1108C }}</ref>



Schemes

Schemes

计划



Several strategies have been proposed to deal with the issue of controlling self-organized criticality:

Several strategies have been proposed to deal with the issue of controlling self-organized criticality:

有人提出了几个策略来处理控制自组织临界性的问题:



  1. The design of controlled avalanches. Daniel O. Cajueiro and Roberto F. S. Andrade show that if well-formulated small and medium avalanches are exogenously triggered in the system, the energy of the system is released in a way that large avalanches are rarer.[3][1][2]

The design of controlled avalanches. Daniel O. Cajueiro and Roberto F. S. Andrade show that if well-formulated small and medium avalanches are exogenously triggered in the system, the energy of the system is released in a way that large avalanches are rarer.

控制雪崩的设计。丹尼尔 · o · 卡约罗(Daniel o. Cajueiro)和罗伯托 · f · s · 安德拉德(Roberto f. s. Andrade)的研究表明,如果配方良好的中小规模雪崩是由系统外部触发的,那么系统的能量释放方式将使大规模雪崩更为罕见。

  1. The modification of the degree of interdependence of the network where the avalanche spreads. Charles D. Brummitt, Raissa M. D'Souza and E. A. Leicht show that the dynamics of self-organized critical systems on complex networks depend on connectivity of the complex network. They find that while some connectivity is beneficial (since it suppresses the largest cascades in the system), too much connectivity gives space for the development of very large cascades and increases the size of capacity of the system.引用错误:没有找到与</ref>对应的<ref>标签
| pmc=3311366}}</ref>

3311366} / ref

  1. The modification of the deposition process of the self-organized system. Pierre-Andre Noel, Charles D. Brummitt and Raissa M. D'Souza show that it is possible to control the self-organized system by modifying the natural deposition process of the self-organized system adjusting the place where the avalanche starts.引用错误:没有找到与</ref>对应的<ref>标签
| pmid=23992086}}</ref>

23992086} / ref

  1. Dynamically modifying the local thresholds of cascading failures. In a model of an electric transmission network, Heiko Hoffmann and David W. Payton demonstrated that either randomly upgrading lines (sort of like preventive maintenance) or upgrading broken lines to a random breakage threshold suppresses self-organized criticality.引用错误:没有找到与</ref>对应的<ref>标签 Apparently, these strategies undermine the self-organization of large critical clusters. Here, a critical cluster is a collection of transmission lines that are near the failure threshold and that collapse entirely if triggered.
}}</ref> Apparently, these strategies undermine the self-organization of large critical clusters. Here, a critical cluster is a collection of transmission lines that are near the failure threshold and that collapse entirely if triggered.

} / ref 显然,这些策略破坏了大型关键集群的自我组织。在这里,一个临界集群是一组接近故障阈值的传输线,一旦触发,这些传输线就会完全崩溃。



Applications

Applications

申请



There are several events that arise in nature or society where these ideas of control may help to avoid them:[3][1][2][4][5][6]

There are several events that arise in nature or society where these ideas of control may help to avoid them:

在自然界或社会中发生的一些事件中,这些控制观念可能有助于避免它们:



  1. Flood caused by systems of dams and reservoirs or interconnected valleys.
Flood caused by systems of dams and reservoirs or interconnected valleys. 

由水坝、水库或相互连接的山谷系统造成的洪水。

  1. Snow avalanches that take place in snow hills.
Snow avalanches that take place in snow hills.

在雪山上发生的雪崩。

  1. Forest fires in areas susceptible to a lightning bolt or a match lighting.
Forest fires in areas susceptible to a lightning bolt or a match lighting. 

易受闪电或火柴照明影响的地区发生森林火灾。

  1. Cascades of load shedding that take place in power grids (a type of power outage). The OPA model is used to study different techniques for criticality control.
Cascades of load shedding that take place in power grids (a type of power outage). The OPA model is used to study different techniques for criticality control.

电网中发生的减载级联(断电的一种形式)。利用 OPA 模型研究了不同的临界控制技术。

  1. Cascading failure in the internet switching fabric.
Cascading failure in the internet switching fabric.

互联网交换结构中的级联故障。

  1. Ischemic cascades, a series of biochemical reactions releasing toxins during moments of inadequate blood supply.
Ischemic cascades, a series of biochemical reactions releasing toxins during moments of inadequate blood supply.

缺血级联反应,在血液供应不足的时刻释放毒素的一系列生化反应。

  1. Systemic risk in financial systems.
Systemic risk in financial systems.

金融系统的系统性风险。

  1. Excursions in nuclear energy systems.
Excursions in nuclear energy systems.

核能系统的游动。



The failure cascades in electrical transmission and financial sectors occur because economic forces cause these systems to operate near a critical point, where avalanches of indeterminate size become possible.

The failure cascades in electrical transmission and financial sectors occur because economic forces cause these systems to operate near a critical point, where avalanches of indeterminate size become possible.

发生电力传输和金融部门的故障级联是因为经济力量使这些系统在临界点附近运行,在那里可能发生规模不确定的雪崩。



See also

See also

参见








References

References

参考资料



  1. 1.0 1.1 1.2 1.3 . arXiv:1305.6648. Bibcode:2010PhRvE..81a5102C. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help) 引用错误:无效<ref>标签;name属性“cajand10b”使用不同内容定义了多次
  2. 2.0 2.1 2.2 2.3 . arXiv:1305.6656. Bibcode:2010EPJB...77..291C. {{cite journal}}: Cite journal requires |journal= (help); Missing or empty |title= (help) 引用错误:无效<ref>标签;name属性“cajand10c”使用不同内容定义了多次
  3. 3.0 3.1 引用错误:无效<ref>标签;未给name属性为cajand10a的引用提供文字
  4. 引用错误:无效<ref>标签;未给name属性为brum12的引用提供文字
  5. 引用错误:无效<ref>标签;未给name属性为noel13的引用提供文字
  6. 引用错误:无效<ref>标签;未给name属性为hh2014的引用提供文字

Category:Applied and interdisciplinary physics

类别: 应用和跨学科物理学

Category:Control theory

范畴: 控制理论

Category:Chaos theory

范畴: 混沌理论

Category:Self-organization

类别: 自我组织

Category:Critical phenomena

范畴: 关键现象


This page was moved from wikipedia:en:Self-organized criticality control. Its edit history can be viewed at 自组织临界控制/edithistory