− | 控制论专家威廉·罗斯·阿什比 W. Ross Ashby 在1947年提出了'''自组织 Self-organization '''的初始原理,<ref name="ashby1947">{{Cite journal | doi=10.1080/00221309.1947.9918144| pmid=20270223| title=Principles of the Self-Organizing Dynamic System| journal=The Journal of General Psychology| volume=37| issue=2| pages=125–28| year=1947| last1=Ashby | first1=W. R.}}</ref><ref>Ashby, W. R. (1962). [http://csis.pace.edu/~marchese/CS396x/Computing/Ashby.pdf "Principles of the self-organizing system"], pp. 255–78 in ''Principles of Self-Organization''. [[Heinz von Foerster]] and George W. Zopf, Jr. (eds.) U.S. Office of Naval Research.</ref>它指出任何确定性[[动力系统]]都会自动演变成一个均衡状态,这种均衡状态可以描述为一个在盆地周围环绕状态的'''[[吸引子]] Attractor '''。一旦到达那里,系统的进一步演化就被约束以保持在吸引子中。这种约束代表了其组成元素或子系统之间相互依赖或协调的某种形式。用阿什比的话来说,每个子系统都适应了所有其他子系统形成的环境。<ref name=ashby1947/> | + | 控制论专家威廉·罗斯·阿什比 W. Ross Ashby 在1947年提出了'''自组织 Self-organization '''的初始原理,<ref name="ashby1947">{{Cite journal | doi=10.1080/00221309.1947.9918144| pmid=20270223| title=Principles of the Self-Organizing Dynamic System| journal=The Journal of General Psychology| volume=37| issue=2| pages=125–28| year=1947| last1=Ashby | first1=W. R.}}</ref><ref>Ashby, W. R. (1962). [http://csis.pace.edu/~marchese/CS396x/Computing/Ashby.pdf "Principles of the self-organizing system"], pp. 255–78 in ''Principles of Self-Organization''. Heinz von Foerster and George W. Zopf, Jr. (eds.) U.S. Office of Naval Research.</ref>它指出任何确定性[[动力系统]]都会自动演变成一个均衡状态,这种均衡状态可以描述为一个在盆地周围环绕状态的'''[[吸引子]] Attractor '''。一旦到达那里,系统的进一步演化就被约束以保持在吸引子中。这种约束代表了其组成元素或子系统之间相互依赖或协调的某种形式。用阿什比的话来说,每个子系统都适应了所有其他子系统形成的环境。<ref name=ashby1947/> |
− | 控制论专家海因茨·冯·福斯特 Heinz von Foerster 于1960年提出了“ 从噪声中获得秩序 Order from noise ” 的原理。<ref>Von Foerster, H. (1960). [http://e1020.pbworks.com/f/fulltext.pdf "On self-organizing systems and their environments"], pp. 31–50 in ''Self-organizing systems''. M.C. Yovits and S. Cameron (eds.), Pergamon Press, London</ref> 该原理指出,自组织是由随机扰动 “噪声” 促进的,该随机扰动使系统在其状态空间中探索各种状态。这增加了系统到达“强”或“深”吸引子池中的机会,然后系统会迅速进入吸引子本身。生物物理学家亨利·阿特兰 Henri Atlan 通过提出“ 噪声带来的复杂性 Complexity from noise,法语 le principe de complexité par le bruit ” 原理发展了这一概念,<ref>See [https://www.google.com/search?&tbm=bks&q=inauthor:%22Henri+Atlan%22%22complexity+from+noise%22 occurrences] on [[Google Books]].</ref><ref>{{cite book |editor-last=François |editor-first=Charles |editor-link=Charles François (systems scientist) |title=International Encyclopedia of Systems and Cybernetics |year=2011 |origyear=[https://books.google.com/books?id=SZxnQgAACAAJ 1997] |edition=2nd |publisher=[[Walter de Gruyter]] |location=[[Berlin]] |page=[https://books.google.com/?id=XCn2mn98uEAC&pg=PA107&dq=%22complexity+from+noise+principle%22+Atlan+1972 107] |isbn=978-3-1109-6801-9 |title-link=International Encyclopedia of Systems and Cybernetics }}</ref> 该原理首见于1972年出版的《L'organisation biologique et lathéoriede l'information》,<ref>[https://www.google.com/search?&q=%22complexité+par+le+bruit%22%22L'Organisation+biologique+et+la+théorie+de+l'information%22+1972].</ref> 然后是1979年出版的《Entre le cristal et lafumée》。<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> or "order out of chaos".<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>热力学家伊利亚·普里戈吉因 Ilya Prigogine 提出了类似的原则,即“波动带来有序 Order through fluctuations ”<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> 或“混乱带来有序 Order out of chaos ”<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>。它也应用在用于解决问题和机器学习的模拟退火方法中。<ref>{{cite journal |last1=Ahmed |first1=Furqan |title=Simulated annealing variants for self-organized resource allocation in small cell networks |journal=Applied Soft Computing |last2=Tirkkonen |first2=Olav |date=January 2016 |volume=38|pages=762–70 |doi=10.1016/j.asoc.2015.10.028 }}</ref> | + | 控制论专家海因茨·冯·福斯特 Heinz von Foerster 于1960年提出了“ 从噪声中获得秩序 Order from noise ” 的原理。<ref>Von Foerster, H. (1960). [http://e1020.pbworks.com/f/fulltext.pdf "On self-organizing systems and their environments"], pp. 31–50 in ''Self-organizing systems''. M.C. Yovits and S. Cameron (eds.), Pergamon Press, London</ref> 该原理指出,自组织是由随机扰动 “噪声” 促进的,该随机扰动使系统在其状态空间中探索各种状态。这增加了系统到达“强”或“深”吸引子池中的机会,然后系统会迅速进入吸引子本身。生物物理学家亨利·阿特兰 Henri Atlan 通过提出“ 噪声带来的复杂性 Complexity from noise,法语 le principe de complexité par le bruit ” 原理发展了这一概念,<ref>See [https://www.google.com/search?&tbm=bks&q=inauthor:%22Henri+Atlan%22%22complexity+from+noise%22 occurrences] on Google Books.</ref><ref>{{cite book |editor-last=François |editor-first=Charles |editor-link= |title=International Encyclopedia of Systems and Cybernetics |year=2011 |origyear=[https://books.google.com/books?id=SZxnQgAACAAJ 1997] |edition=2nd |publisher=Walter de Gruyter |location=Berlin |page=[https://books.google.com/?id=XCn2mn98uEAC&pg=PA107&dq=%22complexity+from+noise+principle%22+Atlan+1972 107] |isbn=978-3-1109-6801-9 |title-link= }}</ref> 该原理首见于1972年出版的《L'organisation biologique et lathéoriede l'information》,<ref>[https://www.google.com/search?&q=%22complexité+par+le+bruit%22%22L'Organisation+biologique+et+la+théorie+de+l'information%22+1972].</ref> 然后是1979年出版的《Entre le cristal et lafumée》。<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> or "order out of chaos".<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>热力学家伊利亚·普里戈吉因 Ilya Prigogine 提出了类似的原则,即“波动带来有序 Order through fluctuations ”<ref>Nicolis, G. and Prigogine, I. (1977). ''Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations''. Wiley, New York.</ref> 或“混乱带来有序 Order out of chaos ”<ref>Prigogine, I. and Stengers, I. (1984). ''Order out of chaos: Man's new dialogue with nature''. Bantam Books.</ref>。它也应用在用于解决问题和机器学习的模拟退火方法中。<ref>{{cite journal |last1=Ahmed |first1=Furqan |title=Simulated annealing variants for self-organized resource allocation in small cell networks |journal=Applied Soft Computing |last2=Tirkkonen |first2=Olav |date=January 2016 |volume=38|pages=762–70 |doi=10.1016/j.asoc.2015.10.028 }}</ref> |