更改

跳到导航 跳到搜索
添加374字节 、 2020年5月24日 (日) 19:20
第798行: 第798行:  
In 1738, Swiss physicist and mathematician Daniel Bernoulli published Hydrodynamica which laid the basis for the kinetic theory of gases. In this work, Bernoulli posited the argument, still used to this day, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the gas pressure that we feel, and that what we experience as heat is simply the kinetic energy of their motion.
 
In 1738, Swiss physicist and mathematician Daniel Bernoulli published Hydrodynamica which laid the basis for the kinetic theory of gases. In this work, Bernoulli posited the argument, still used to this day, that gases consist of great numbers of molecules moving in all directions, that their impact on a surface causes the gas pressure that we feel, and that what we experience as heat is simply the kinetic energy of their motion.
   −
1738年,瑞士的物理学家和数学家丹尼尔·伯努利发表了《水动力学》 ,这本书奠定了分子运动论的基础。在这项工作中,伯努利假定了,直到今天仍然沿用的论点,即气体是由大量向各个方向运动的分子组成的,它们对表面的影响导致了我们感觉到的气体压力,而我们感受到的热仅仅是它们运动的动能。
+
1738年,瑞士的物理学家和数学家丹尼尔·伯努利发表了《水动力学》 ,这本书奠定了分子动力学理论的基础。在这项工作中,伯努利假定气体是由大量向各个方向运动的分子组成的,它们对表面的影响导致了我们感觉到的气体压力,而我们感受到的热仅仅是它们运动的动能,这一点直到今天仍在沿用。
      第806行: 第806行:  
In 1859, after reading a paper on the diffusion of molecules by Rudolf Clausius, Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range.<ref>See:
 
In 1859, after reading a paper on the diffusion of molecules by Rudolf Clausius, Scottish physicist James Clerk Maxwell formulated the Maxwell distribution of molecular velocities, which gave the proportion of molecules having a certain velocity in a specific range.<ref>See:
   −
1859年,在阅读了 Rudolf Clausius 的一篇关于分子扩散的论文之后,苏格兰物理学家詹姆斯·克拉克·麦克斯韦提出了分子速度的麦克斯韦-玻尔兹曼分布,它给出了在一个特定范围内具有某种速度的分子的比例。 参考参考:
+
1859年,在阅读了 Rudolf Clausius 的一篇关于分子扩散的论文之后,苏格兰物理学家詹姆斯·克拉克·麦克斯韦提出了分子速度的麦克斯韦-玻尔兹曼分布,它给出了在一个特定范围内具有某种速度的分子的比例。这是物理学里第一个统计定律。麦克斯韦还提出了第一个力学论点,即分子碰撞必然导致温度的平衡,从而趋向平衡。五年之后,也就是1864年,维也纳的年轻学生路德维希·玻尔兹曼(Ludwig Boltzmann)偶然发现了麦克斯韦尔的论文,并花了大半辈子的时间来进一步研究这一课题。
    
*  Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I.  On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' :  19–32.  
 
*  Maxwell, J.C. (1860) [https://books.google.com/books?id=-YU7AQAAMAAJ&pg=PA19#v=onepage&q&f=false "Illustrations of the dynamical theory of gases. Part I.  On the motions and collisions of perfectly elastic spheres,"] ''Philosophical Magazine'', 4th series, '''19''' :  19–32.  
第818行: 第818行:  
Statistical mechanics proper was initiated in the 1870s with the work of Boltzmann, much of which was collectively published in his 1896 Lectures on Gas Theory. Boltzmann's original papers on the statistical interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the equation of state of gases, and similar subjects, occupy about 2,000 pages in the proceedings of the Vienna Academy and other societies. Boltzmann introduced the concept of an equilibrium statistical ensemble and also investigated for the first time non-equilibrium statistical mechanics, with his H-theorem.
 
Statistical mechanics proper was initiated in the 1870s with the work of Boltzmann, much of which was collectively published in his 1896 Lectures on Gas Theory. Boltzmann's original papers on the statistical interpretation of thermodynamics, the H-theorem, transport theory, thermal equilibrium, the equation of state of gases, and similar subjects, occupy about 2,000 pages in the proceedings of the Vienna Academy and other societies. Boltzmann introduced the concept of an equilibrium statistical ensemble and also investigated for the first time non-equilibrium statistical mechanics, with his H-theorem.
   −
统计力学是19世纪70年代由玻尔兹曼的著作发起的,其中大部分在他1896年的气体理论演讲中集体出版。在维也纳学院和其他学会的会议记录中,玻尔兹曼关于热力学的统计解释、 h 定理、传输理论、热平衡、气体的状态方程以及类似主题的原始论文占据了大约2000页。引入了平衡系综的概念,并用他的 h 定理第一次研究了非平衡统计力学。
+
统计力学是19世纪70年代由玻尔兹曼的工作创立的,其中大部分在他1896年的气体理论演讲中集结出版。在维也纳学院和其他学会的会议记录中,玻尔兹曼关于热力学的统计解释、 H-定理、传输理论、热平衡、气体的状态方程以及类似主题的原始论文占据了大约2000页。玻尔兹曼引入了平衡系综的概念,并用他的H-定理第一次研究了非平衡态统计力学。
      第826行: 第826行:  
The term "statistical mechanics" was coined by the American mathematical physicist J. Willard Gibbs in 1884. "Probabilistic mechanics" might today seem a more appropriate term, but "statistical mechanics" is firmly entrenched. Shortly before his death, Gibbs published in 1902 Elementary Principles in Statistical Mechanics, a book which formalized statistical mechanics as a fully general approach to address all mechanical systems—macroscopic or microscopic, gaseous or non-gaseous. Gibbs' methods were initially derived in the framework classical mechanics, however they were of such generality that they were found to adapt easily to the later quantum mechanics, and still form the foundation of statistical mechanics to this day.
 
The term "statistical mechanics" was coined by the American mathematical physicist J. Willard Gibbs in 1884. "Probabilistic mechanics" might today seem a more appropriate term, but "statistical mechanics" is firmly entrenched. Shortly before his death, Gibbs published in 1902 Elementary Principles in Statistical Mechanics, a book which formalized statistical mechanics as a fully general approach to address all mechanical systems—macroscopic or microscopic, gaseous or non-gaseous. Gibbs' methods were initially derived in the framework classical mechanics, however they were of such generality that they were found to adapt easily to the later quantum mechanics, and still form the foundation of statistical mechanics to this day.
   −
1884年,美国数学物理学家 j. Willard Gibbs 首创了“统计力学”一词。在今天看来,“概率力学”似乎是一个更合适的术语,但“统计力学力学”却根深蒂固。在吉布斯去世前不久,他于1902年在《统计力学出版了《基本原理》一书,这本书正式确定了统计力学是解决所有机械系统ー宏观的或微观的、气态的或非气态的ー的一种完全通用的方法。吉布斯的方法最初是在经典力学的框架下产生的,然而它们是如此的普遍,以至于人们发现它们很容易适应后来的量子力学,直到今天仍然是统计力学的基础。
+
1884年,美国数学物理学家约西亚·威拉德·吉布斯首创了“统计力学”一词。在今天看来,“概率力学”似乎是一个更合适的术语,但“统计力学”却根深蒂固。在吉布斯去世前不久,他于1902年在《统计力学》出版了《基本原理》一书,这本书正式确定了统计力学是解决所有力学系统——宏观的或微观的、气态的或非气态的——的一种完全通用的方法。吉布斯的方法最初是在经典力学的框架下产生的,然而它们是如此的普遍,以至于人们发现它们很容易适应后来的量子力学,直到今天仍然是统计力学的基础。
 
  −
 
      
== See also ==
 
== See also ==
320

个编辑

导航菜单