更改

添加1,289字节 、 2020年7月17日 (五) 08:41
无编辑摘要
第15行: 第15行:  
Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.
 
Artificial life (often abbreviated ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American theoretical biologist, in 1986. In 1987 Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.
   −
人工生命(通常缩写为 ALife 或 A-Life)是一个研究领域,研究人员通过使用计算机模型、机器人和生物化学模拟来研究与自然生命、其过程和进化相关的系统。这个学科在1986年由美国理论生物学家克里斯托弗·兰顿命名。1987年,朗顿在洛斯阿拉莫斯组织了第一次这方面的会议。生命有三种主要的方式,因其方式而得名: 软源于软件; 硬源于硬件; 湿源于生物化学。人工生命研究者通过试图再现生物现象的某些方面来研究传统生物学。
+
人工生命(经常被缩写为ALife或者A-Life)是在电脑系统中,通过仿真模型、机器技术和生物化学方式,模拟生命系统来研究生命的过程及其演变的领域。这个概念由美国理论生物学家克里斯托弗·兰顿Christopher Langton于1986年提出。1987年,兰顿第一次在新墨西哥州的洛斯阿拉莫斯 Los Alamos, New Mexico举行了该领域的第一次会议。
 +
从研究方法的角度,可将人工生命研究分为三类:
 +
1、软件模拟
 +
2、硬件模拟
 +
3、基于生物化学的研究
 +
人工生命研究者尝试通过重现生命现象的各个方面来研究传统的生物学。
 +
 
      第25行: 第31行:  
A [[Braitenberg vehicle simulation, programmed in breve, an artificial life simulator]]
 
A [[Braitenberg vehicle simulation, programmed in breve, an artificial life simulator]]
   −
一个[布莱登伯格飞行器模拟器,在短期内编程,一个人工生命模拟器]
+
用breve来编程的人工生命模拟 Braitenberg仿真小车
             +
== Overview 概述 ==
   −
== Overview ==
+
== Overview 概述==
   −
== Overview ==
+
概述
 
  −
概览
      
Artificial life studies the fundamental processes of [[living system]]s in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems.  These topics are broad, but often include [[Evolutionary algorithm|evolutionary dynamics]], [[Emergence|emergent properties of collective systems]], [[Biomimetics|biomimicry]], as well as related issues about the [[Philosophy of biology|philosophy of the nature of life]] and the use of lifelike properties in artistic works.
 
Artificial life studies the fundamental processes of [[living system]]s in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems.  These topics are broad, but often include [[Evolutionary algorithm|evolutionary dynamics]], [[Emergence|emergent properties of collective systems]], [[Biomimetics|biomimicry]], as well as related issues about the [[Philosophy of biology|philosophy of the nature of life]] and the use of lifelike properties in artistic works.
第41行: 第46行:  
Artificial life studies the fundamental processes of living systems in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems.  These topics are broad, but often include evolutionary dynamics, emergent properties of collective systems, biomimicry, as well as related issues about the philosophy of the nature of life and the use of lifelike properties in artistic works.
 
Artificial life studies the fundamental processes of living systems in artificial environments in order to gain a deeper understanding of the complex information processing that define such systems.  These topics are broad, but often include evolutionary dynamics, emergent properties of collective systems, biomimicry, as well as related issues about the philosophy of the nature of life and the use of lifelike properties in artistic works.
   −
人工生命研究人工环境中生命系统的基本过程,以便对定义这些系统的复杂信息处理有更深入的理解。这些话题很广泛,但通常包括进化动力学,集体系统的涌现特性,仿生学,以及有关生命本质的哲学和在艺术作品中使用逼真特性的相关问题。
+
人工生命研究人工环境中生命系统的基本过程,借此对定义此类系统的复杂信息进行更深入的理解。该研究角度涵盖深广,但通常会包括进化动力学、集体系统的涌现特性、仿生学、对生命本质哲学研究的相关内容,以及艺术作品中逼真的生物描绘。
             +
== Philosophy 哲学讨论==
    
== Philosophy ==
 
== Philosophy ==
   −
== Philosophy ==
+
哲学讨论
 
  −
哲学
        第61行: 第65行:  
The modeling philosophy of artificial life strongly differs from traditional modeling by studying not only "life-as-we-know-it" but also "life-as-it-might-be".
 
The modeling philosophy of artificial life strongly differs from traditional modeling by studying not only "life-as-we-know-it" but also "life-as-it-might-be".
   −
人工生命的建模哲学不仅研究“我们所知的生命” ,而且研究“可能的生命” ,这与传统的建模哲学有着很大的不同。
+
人工生命的建模哲学,与传统的建模相比有显著差异,它不仅是研究我们“所知的生命”,而且去“研究生命可能的样子”。
 +
人造生活的建模哲学与传统建模有很大不同,不仅研究“我们知道的生活”,而且研究“可能生存的生活”。
      第71行: 第76行:  
A traditional model of a biological system will focus on capturing its most important parameters. In contrast, an alife modeling approach will generally seek to decipher the most simple and general principles underlying life and implement them in a simulation. The simulation then offers the possibility to analyse new and different lifelike systems.
 
A traditional model of a biological system will focus on capturing its most important parameters. In contrast, an alife modeling approach will generally seek to decipher the most simple and general principles underlying life and implement them in a simulation. The simulation then offers the possibility to analyse new and different lifelike systems.
   −
传统的生物系统模型将着重于捕捉其最重要的参数。相比之下,人生建模方法通常寻求破译生活中最简单和最一般的原则,并在模拟中实现它们。这种模拟为分析新的和不同的生物系统提供了可能性。
+
传统的生物学模型可能会集中捕捉某生物最重要的决定因素,与之相比,人工生命模型建模方法想要破译隐藏在生命体中最简单、最通用的规则和原理,并在模拟中实现它们。仿真为分析各种新出现的似生系统提供了可能性。
 
        第81行: 第85行:  
Vladimir Georgievich Red'ko proposed to generalize this distinction to the modeling of any process, leading to the more general distinction of "processes-as-we-know-them" and "processes-as-they-could-be".
 
Vladimir Georgievich Red'ko proposed to generalize this distinction to the modeling of any process, leading to the more general distinction of "processes-as-we-know-them" and "processes-as-they-could-be".
   −
Vladimir Georgievich Red‘ ko 建议将这种区分概括为对任何过程的建模,从而导致对”我们所知道的过程”和”过程可能是的过程”的更一般性区分。
+
Vladimir Georgievich Red'ko建议将这一本质区别推广至任意过程的建模中,从而概括出“我们所知的过程”与“他们可能是的过程”更加广义的区别。
      第91行: 第95行:  
At present, the commonly accepted definition of life does not consider any current alife simulations or software to be alive, and they do not constitute part of the evolutionary process of any ecosystem. However, different opinions about artificial life's potential have arisen:
 
At present, the commonly accepted definition of life does not consider any current alife simulations or software to be alive, and they do not constitute part of the evolutionary process of any ecosystem. However, different opinions about artificial life's potential have arisen:
   −
目前,普遍接受的生命定义并不认为任何现有的生命模拟或软件是活的,它们也不构成任何生态系统进化过程的一部分。然而,关于人工生命的潜力出现了不同的观点:
+
近年来,学界普遍认为,任何系统或者软件都不能真正实现生命仿真,他们并不能构成生态系统进化过程的一部分。然而,有关人工生命潜力出现了不同的观点:
      第103行: 第107行:  
* The ''weak alife'' position denies the possibility of generating a "living process" outside of a chemical solution. Its researchers try instead to simulate life processes to understand the underlying mechanics of biological phenomena.
 
* The ''weak alife'' position denies the possibility of generating a "living process" outside of a chemical solution. Its researchers try instead to simulate life processes to understand the underlying mechanics of biological phenomena.
    +
      强人工生命模拟方向认为(参见强AI),“生命是可以从任何特定的介质抽离的过程”(约翰·冯·诺伊曼)[ 引证需要 ]。值得注意的是,汤姆·雷(Tom Ray)宣布,他的程序Tierra不是模拟在计算机中的生活,而是对其进行综合。
 +
·      弱人工生命模拟方向否认在化学溶液之外存在“活过程”的可能,研究人员转而尝试模拟生命过程,以了解生物现象的潜在机理。
      第108行: 第114行:        +
==Software-based ("soft")软件模拟人工生命==
    
==Software-based ("soft")==
 
==Software-based ("soft")==
   −
==Software-based ("soft")==
+
软件模拟人工生命
 
  −
基于软件的(“软”)
        第119行: 第124行:       −
=== Techniques ===
+
=== Techniques 技术===
    
=== Techniques ===
 
=== Techniques ===
第130行: 第135行:     
*[[Artificial neural network]]s are sometimes used to model the brain of an agent.  Although traditionally more of an [[artificial intelligence]] technique, neural nets can be important for simulating [[population dynamics]] of organisms that can ''learn''.  The symbiosis between learning and evolution is central to theories about the development of instincts in organisms with higher neurological complexity, as in, for instance, the [[Baldwin effect]].
 
*[[Artificial neural network]]s are sometimes used to model the brain of an agent.  Although traditionally more of an [[artificial intelligence]] technique, neural nets can be important for simulating [[population dynamics]] of organisms that can ''learn''.  The symbiosis between learning and evolution is central to theories about the development of instincts in organisms with higher neurological complexity, as in, for instance, the [[Baldwin effect]].
 +
    元胞自动机最早用于人工智能研究,至今仍常用于简化可扩展性和并行化的研究。人工生命与细胞自动机在早期有着相当紧密的联系。
 +
·      人工神经网络有时被用来代替大脑建模。尽管传统上它更多地是一种人工智能技术,但是神经网络对于模拟可以学习的生物的种群动态非常重要。学习与进化之间的共生关系是对具有更高神经系统复杂性的生物(例如鲍德温效应)本能发展研究的核心。
      第136行: 第143行:        +
=== Notable simulators 著名的模拟器===
    
=== Notable simulators ===
 
=== Notable simulators ===
   −
=== Notable simulators ===
     −
值得注意的模拟器
      
This is a list of artificial life/[[digital organism]] simulators, organized by the method of creature definition.
 
This is a list of artificial life/[[digital organism]] simulators, organized by the method of creature definition.
第147行: 第153行:  
This is a list of artificial life/digital organism simulators, organized by the method of creature definition.
 
This is a list of artificial life/digital organism simulators, organized by the method of creature definition.
   −
这是一个人工生命 / 数字有机体模拟器的列表,按照生物定义的方法组织。
+
下表列出了按照生物定义方法整理的人工生命/ 数字生物模拟器。
     
77

个编辑